
Taylor University Taylor University

Pillars at Taylor University Pillars at Taylor University

Computer Science & Engineering Department Academic Departments & Programs

12-2021

PSL-An Expert System to Evaluate Degree Plans PSL-An Expert System to Evaluate Degree Plans

Robert Swanson
Taylor University, robert_swanson@taylor.edu

Follow this and additional works at: https://pillars.taylor.edu/cse

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Swanson, Robert, "PSL-An Expert System to Evaluate Degree Plans" (2021). Computer Science &
Engineering Department. 2.
https://pillars.taylor.edu/cse/2

This Paper is brought to you for free and open access by the Academic Departments & Programs at Pillars at Taylor
University. It has been accepted for inclusion in Computer Science & Engineering Department by an authorized
administrator of Pillars at Taylor University. For more information, please contact pillars@taylor.edu.

https://pillars.taylor.edu/
https://pillars.taylor.edu/cse
https://pillars.taylor.edu/academic-departments
https://pillars.taylor.edu/cse?utm_source=pillars.taylor.edu%2Fcse%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pillars.taylor.edu%2Fcse%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pillars.taylor.edu/cse/2?utm_source=pillars.taylor.edu%2Fcse%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pillars@taylor.edu

PSL: An Expert System to Evaluate Degree Plans

Robert Swanson

December 13, 2021

Abstract

This paper describes a general-purpose expert system to
evaluate degree plans according to the individual prefer-
ences of a college student. This system implements a pref-
erence specification language (PSL) on top of this expert
system to allow for the textual expression of certain require-
ments and preferences that the system uses for evaluation.
The PSL evaluator produces a single value to describe how
well it meets the student’s preferences, which a plan gen-
eration system could use to create a degree plan optimized
according to the specification.

1 Introduction

Constructing a valid and efficient degree plan poses one of
the most stressful tasks for many college students who of-
ten feel overwhelmed either by the large number of course
choices or by the constraints of their degree requirements.
The college course scheduling problem explores how systems
might automate this task. Such systems offer the great po-
tential to help students succeed in their college education
by taking classes that fit their needs better. They can also
assist professors in the oft-undesirable job of creating a cus-
tomized degree plan for every student they advise.

1.1 Existing Work

Existing solutions to this problem come in two general fla-
vors:

1. Genetic algorithms (GAs) which generate many (often
invalid) plans and evaluate them according to a certain
fitness function.

2. Constraint-based searches which deterministically
search a valid plan space

For example, one system implements a GA that defines
a fitness function on four chosen properties including the
number of prerequisite violations, and the number of course
assignments that deviate from a given curriculum plan [15].

Another system used a prolog implementation to execute
a backtracking search through certain constraints and could
produce a list of plans that best meet these constraints [5].
This system offers the theoretical flexibility to define arbi-
trary constraints using Prolog’s logical paradigm, which in-
spired the eventual design for the expressive PSL language.
However, this system also makes certain assumptions about
the use case, such as that non-major classes can fit easily
around major classes.

Percepolis implements yet another solution that uses a
graph-based approach to construct an optimized plan [12]
[11]. The system defines graph relationships between de-
gree requirements and the courses that satisfy those re-
quirements. Such a design also allows for the expression of

prerequisite constraints in the native searching algorithm,
which results in a search space more constrained to the valid
plan space. This relationship model offers great perfor-
mance advantages but also limits the kinds of requirements
that can be expressed. It also offers no ability to consider
course offering times, making the assumption that any com-
bination of courses in a given semester will work provided
a certain maximum number of courses.

1.2 Objective

All these systems assert certain constraints on the optimiza-
tion of the generated plans. Though they likely lead to great
performance improvements, they greatly reduce the poten-
tial usefulness to students who usually have certain custom
preferences for their degree plan.

This project explores how to construct highly customized
degree plans, focusing more on the expression of preferences
and less on the performance of the system.

Though the PSL system does not currently implement
plan generation abilities, the ability to produce a single
score from a plan produces a method by which to feasi-
bly generate an optimized plan. For example, a brute force
GA solution could simply use the evaluation system as a
fitness function for a GA, and then construct chromosomes
with the degree plan.

2 PSL Prototype

2.1 Preferences

The first PSL version served as a prototype to test out how
a domain-specific language might enable students to express
complex preference structures [17].

This included performing an informal survey of under-
graduate students to gather a broad idea of the kinds of
features of degree plans that students attempt to optimize
towards. Organizing all of these preferences into a structure
that could be expressed as a DSL proved a difficult task due
to the large divergence in the nature of the preferences.

For example, some students stated that they optimized
their plans to increase the number of classes they’d have
with their friends, while others sought to minimize the walk-
ing distance between their classes. For the sake of simplic-
ity, we constrained ourselves to the subset of preferences
that depend only on information known by the registra-
tion system concerning a single student (excluding the two
aforementioned preferences).

2.2 Prototype Design

The prototype limited the scope of preferences to a few
values (credits, number of courses, course order) each with
a quantifier hardcoded in the syntax.

1

Figure 1: The Prototype’s Dataflow

prefer more than 15 credits.

Listing 1: Preference Scored With Sigmoid

Figure 1 shows the high-level structure of the PSL pro-
totype. It starts with the student preferences expressed in
a .psl file. The PSL parser, implemented in ANTLR for
Java, takes this file and produces evaluator.py file. This
file imports the helpers.py file and serves as the reusable
plan evaluator. This evaluator takes a plan.json file and
produces two output values describing how well the plan
fulfills the specification:

1. A percentage score describing how well the plan fulfills
the preferences in the specification

2. A boolean value describing if all the plan fulfills all of
the requirements in the specification

This distinction between requirements and preferences al-
lows the student to express which components of the speci-
fication should result in the system completely rejecting the
plan.

2.3 Scoring

s(x) =
1

1 + 9−x
(1)

n(x, l, u) =
x− l

u− l
(2)

To produce a single percentage value that described the
overall result of multiple preferences, multiple scoring func-
tions were needed to account for different desired behaviors.

Equation 1 shows a variant of the sigmoid function that
can compute scores for preferences that sought to maximize
or minimize a theoretically unbounded value (for example
desiring more than 15 credits in a semester). The constant 9
ensures that input values of -1 and 1 result in output scores

(a) Sigmoid

(b) Optimum

Figure 2: Scoring Functions

prefer 15 credits.

Listing 2: Preference Scored With Optimum

of 25% and 75% respectively. These values serve as anchor
points to equation 2 can normalize given different expected
lower and upper bounds.

For example, the listing 1 describes a preference that will
produce its score by passing the number of credits into
s(n(x, 15, 17)), where 17 is computed as a hardcoded de-
viance from the provided value. This normalization func-
tion also allows for l to be greater than u, which allows for
preferences to reward lower input values.

o(x) = (
1

4
)x

2

(3)

n(x,m, d) =
x−m

d
(4)

An optimizing function scores preferences that seek close-
ness to a particular value. Equation 3 shows the chosen
equation, which anchors -1 and 1 input values the first quar-
tile (25%). Equation 4 implements a normalizing function
that takes in the mean value representing the optimum in-
put value and also takes in the deviance from that mean
that should result in a 25% score.

For example, listing 2 describes a preference that would
define the score as o(n(15, 1)) where 1 is the hardcoded de-
viance for that preference. The optimum function could
also distinguish between left and right deviance to support
punishing deviance to one side over the other.

These scoring functions (in conjunction with others that
allow for hard boundaries) can be configured differently for
different evaluators to produce percentages that stay be-
tween 0% and 100%, but show the most extreme change in

2

Figure 3: PSL System Overview

the portion of the domain that is most expected.

2.4 Weaknesses

The completion of the prototype demonstrated the feasibil-
ity of creating a domain-specific language to express prefer-
ences that could be used to automatically evaluate a degree
plan. However, the prototype suffered several design flaws
that limited its usability.

First off, the splitting between a java parser and a python
evaluation system resulted in significant overhead including
launching a new process for every new plan (an inhibitor to
the plan generation objective) and implementing a python
generation library that constructed evaluators as strings.
The final design featured a unified Java implementation
which resulted in a far more sensible specification construc-
tion process.

The prototype also suffered from an inflexible grammar
that allowed for no construction of constraints that weren’t
hard-coded in the grammar. The final implementation
would build on this by implementing a modular grammar
that could combine evaluators with different quantifiers to
construct a larger number of constraints.

3 PSL Design

3.1 Overview

As figure 3 illustrates, The PSL system inherited the pro-
totype’s basic high-level structure, but unified the parser
and evaluator into a single Java project and implemented a
highly robust plan evaluation SDK [16].

The system takes in four input files:

1. Catalog.json: contains general information about
courses (eg. course name)

2. Offerings.json: contains term-specific information
about course offerings/sections (eg. offering time)

3. Plan.json: lists terms and the course offerings within
each to indicate the degree plan the system will evalu-
ate

4. Preferences.psl: defines the student requirements
and preferences for their degree plan

It produces a single output file, Result.json containing
the evaluation result along with a structured description of
the system’s reasoning.

On startup, the system uses gson to parse the input json
files into an object structure that serves as the system’s
internal database of knowledge for plan details necessary to
evaluate it. After parsing the json, the system dynamically
links the objects to each other (effectively performing inner
joins). This allows for the inference of course info given
a specific course offering and for the inference of a course
offering given a courseID within a degree plan. Unlike the
prototype, the system only needs to load this information
once, even when the system evaluates multiple plans or uses
multiple specifications.

Just as the prototype, the PSL parser takes in a .psl file
defining the student preferences. However, unlike before,
the parser constructs and produces a Specification java
object, holding the compiled preference information. This
object can evaluate degree plans and determine whether
it meets all the requirements and how well it meets the
preferences. It can also explain the logic behind the result of
the whole specification as well as any of its sub-components.

3.2 PSL Grammar

Listing 3 shows a sample PSL file that demonstrates the
expressiveness of the language. It shows how any combina-
tion of quantifiers and evaluators can construct a constraint.
This design necessitates only a single definition of any eval-
uator rather than a separate definition as the prototype did.

Listing 6 (Appendix A.1) shows the important definitions
in the PSL grammar. It consists of one or more named
blocks, where each block can have a defined set up priority
definitions, followed by one or more specifications.

3.2.1 Specifications

The grammar defines 5 kinds of specifications: preferences,
requirements, conditionals, contextuals, and lists.

Preference specifications define a priority which deter-
mines how much that specification will influence the overall
score. For example, preferences using the strongly priority
have 5 times more impact on the plan score than preferences
that use the moderately priority. They also contain a con-
straint that defines an attribute of a plan and what the
student desires about that attribute.

Requirement specifications contain a single requireable
constraint. Requireable constraints compose a subset of
constraints that, in addition to supporting continuous scor-
ing (for preference purposes), also support boolean valida-
tion (for requirement purposes. For example, the more con-
straint allows a user to instruct the system to maximize a
particular value. Because they don’t specify a minimum
value, the constraint can produce a score that increases
along with its input value, it cannot return the boolean
value needed for requirements.

3

1 student_preferences (moderately=2.0, strongly=10.0) {

2 require plan starting in fall 2018.

3 require plan ending on or before spring 2022.

4

5 prefer strongly starting at or after 9:00 AM.

6 prefer strongly more courses.

7 prefer strongly taking course "COS-121".

8

9 if taking course "COS-120" then {

10 prefer moderately taking course "COS-120" before fall 2019.

11 } otherwise if taking course "SYS-120" then {

12 prefer moderately taking course "SYS-120" before fall 2019.

13 }

14

15 for terms where less than 16 credits {

16 prefer not meeting at 12:00 PM - 12:50 PM.

17

18 for days where less than 120 meeting minutes {

19 prefer ending before 1:00 PM.

20 }

21 }

22

23 for days where (at least 2 courses or not meeting at 12:00 PM - 12:50 PM) {

24 prefer meeting at 11:00 AM - 11:50 AM.

25 }

26

27 for thursdays prefer strongly not meeting at 2:00 PM - 4:00 PM.

28 }

Listing 3: Sample PSL File

Conditional specifications contain a set of condition-
specification pairs. The conditional specification will evalu-
ate any specifications paired with conditions that resolve as
true. Conditions support boolean logic with an atomic unit
of a requireable constraint (which supports boolean evalu-
ation).

Contextual specifications define a context level, a con-
dition to serve as the context filter, and a specification.
Contexts allow the student to describe preferences on three
levels:

1. With respect to the full plan

2. With respect to one or more terms

3. With respect to one or more weekdays

Contextual specifications use the provided condition to de-
termine which sub-contexts will make up the new context.
Evaluators may provide different values depending on their
context. For example, a credits evaluator in the full plan
context returns the total number of credits, but the same
evaluator in a terms context will return a list of credit
counts for each term.

Specification lists allow any grammatical element that ex-
pects a specification to support receiving more than one
specification in a curly-braced-surrounded list. Conditional
and contextual specifications serve as the primary user of
the specification lists, but they can also stand alone and
serve as a visual grouping element without impacting the
system’s behavior.

This design allows for any arbitrary nesting of condi-
tional and contextual specifications with one notable ex-
ception: contextual specifications may not semantically
broaden the context level. For example, the listener will
throw an error if a for days where... specification nests
a for terms where... specification.

3.2.2 Constraints

Specifications eventually boil down to a series of constraints,
which describe certain restrictions on a value.

Requireable constraints generally group a value, quanti-
fier, and evaluator. For example, an equal constraint states
that the user wants a particular value to evaluate close to
a given value. PSL implements 5 quantifiers corresponding
to the =, <, >, ≤, and ≥ operators. Any boolean con-
straint (defined as any boolean evaluator) can also compose
a requireable constraint.

Non-requireable constraints contain only the quantifier
and evaluator. They allow a user to specify only that they
want to maximize or minimize a particular value, but with-
out specifying how high or low they want the value.

3.2.3 Evaluators

Digging down another level of abstraction, we find that eval-
uators construct constraints. Evaluators describe a partic-
ular attribute of a plan (more specifically a context from a
plan). Evaluators can be characterized by the type of value
they return and by how they respond to their context level.

4

The PSL system supports 4 return types from evaluators:
numeric, term-year, time, and boolean. Notably, a term-
year evaluator can also serve as a boolean evaluator, for
cases where the student wants to ensure that the evaluator
returns a non-null value (for example requiring a class, but
for any time).

3.3 Evaluation Engine

3.3.1 Specification

The evaluation engine provides an SDK to construct a
Specification type object capable of evaluating a degree
plan. The PSL language enables a text-based interface
to the evaluation engine, but the engine could also inter-
face with a graphical user interface to construct a speci-
fication. Figure 4 shows the high-level view of the basic
class construction hierarchy. Specifications are essentially
constructed of Constraint objects, which, in turn, are con-
structed of ContextEvaluator objects.

The evaluation engine’s structure closely resembles the
structure of the grammar, starting with the highest level of
abstraction at the level of a Specification. This level
takes a Context as input and produces a Score as an
output.

This Score object contains a boolean value describing
whether all requirements have been met, an accumulator
describing the ”points” accumulated, and a maximum de-
scribing the maximum number of ”points” to divide out of
the accumulator. Because the Score preserves the integrity
of the denominator, any specification that contributes to the
score will have an impact on the final score directly propor-
tional to its priority (regardless of the PSL structure).

The evaluation engine generally seeks to follow a func-
tional programming paradigm, where any part of the specifi-
cation can compute its value dynamically given a particular
context. The evaluate() function of the Specification

class shown in listing 4 demonstrates this design through
its ‘context‘ input value. This value contains all the infor-
mation that the specification will evaluate according to its
nature. The ‘evaluateAll parameter defines whether the
evaluation engine should run through all the nested speci-
fications, or if it should stop once a requirement violation
invalidates the plan.

The specification also defines the
getSimplifiedSpecification() function, which re-
turns a version of itself that optimizes out any unnecessary
complexity (eg. extracting out the specification from a
specification list of size 1).

As figure 4 shows, 6 classes implement the
Specification abstract class, 5 of which correspond
to the PSL grammar’s specification definitions. The
remaining specification simply serves as the top-level
container for a specification.

3.3.2 Constraints

Just as in the grammar, Constraint objects build up the
Specification. This level also takes a Context as in-
put but produces a double as an output.

Listing 4 shows that all constraints must implement the
score() function. This function is used by preference spec-
ifications to produce a double value between 0 and 1 accord-
ing to how well the provided context meets the constraint.

Listing 4 also shows the implementation for
RequireableConstraint, which extends Constraint.
Requireable constraints add the ability to call the
fulfilled() function which returns a boolean value
according to whether or not the context fulfills the
constraint.

6 classes extend the RequireableConstraint class, im-
plementing the 5 different quantifiers (=, >, <, ≥, ≤), and
also the boolean constraint. The first five constraints take a
context evaluator and compare the result to a static value.
The boolean constraint simply returns the result from a
boolean evaluator.

Two classes extend only the Constraint class:
MoreConstraint and LessConstraint. These constraints
take a context evaluator and score them according to the
sigmoid function normalized to hardcoded values for that
context evaluator (given its context level).

3.3.3 Context

The Context class serves two primary purposes:

1. As a container for a degree plan that can scope out (dis-
able) certain sub-contexts (to focus on certain terms or
weekdays)

2. To maintain a ContextLevel state that specifies the
context level that context-sensitive evaluators should
use

The context system employs a complex structure of sub-
context as shown in figure 5. The PSL system supports 4
context layers:

1. Context: the top level context that contains pointers
to the term contexts

2. TermSubContext: the second level context which con-
tains a list of all the CourseOfferings scheduled for
the term, and also pointers to the week contexts

3. WeekSubContext: the third level context (which is not
exposed to the user), but facilitates courses that start
or end partially through the semester. Contains point-
ers to weekday contexts

4. WeekdaySubContext: the fourth level context that di-
rectly contains the Meeting objects representing the
planned classes meeting that day

Each context level implements a applyContextFilter()

function which takes in a condition as defined from a con-
textual specification. That condition is evaluated for each
sub-context to select which sub-contexts will remain active.

For example, the condition defined in line 15 of listing 3
is applied to each term in the context. Only terms that
satisfy the condition are considered by the nested specifi-
cations. Notice that the condition specifies terms with less
than 16 credits, even though the contextual specification lies
in the full-plan context. Because the condition is applied to
each term, the credits evaluator will be applied to each
term, and thus will be scored according to the hard-coded
deviance specified for that evaluator.

Contexts also support filtering explicitly by term-years or
by weekdays as demonstrated in line 27 of listing 3.

Context filters are applied to the context when evaluat-
ing nested specifications by pushing the new context to a

5

Figure 4: Evaluation Engine

Figure 5: Context Levels

stack. Filters are then unapplied by popping that stack be-
fore evaluating specifications outside the scope of the con-
textual specification.

The context system exposes a series of iterable objects to
context evaluators to simplify their implementation. These
iterators allow for contexts to change without necessitat-
ing any overhead costs of recomputing course offerings or
meetings in scope.

These iterators allow for 1st, 2nd, and 3rd de-
gree looping through the context. For exam-
ple, the PlanMeetingIterator simply iterates
through the meetings within the plan. However,
the PlanTermMeetingIterable iterates through
TermMeetingIterable objects, which allow for direct
iteration of the meetings for a respective term. Another
level of iterators allows for iterating through the meetings
in a given weekday, and all these iterators also exist for
course offering iteration.

3.3.4 Context Evaluators

ContextEvaluator objects build up Constraint objects
and serve as the dynamically computed value. As shown in
listing 4, context evaluators must implement a getValue()

function which returns a Result object corresponding to
the current context. The Result object is extend by three
classes corresponding to each of the 3 exposed context lev-
els:

1. PlanResult: contains a single Value object

2. TermsResult: contains a list of Value objects, one for
each term in context

3. DaysResult: a three-dimensional array of Value ob-
jects, for each term, for each week, for each weekday in
context

The Value object type serves as the atomic unit for evalu-
ator results. There are 4 types of values: Boolean Numeric,
Time, and TermYear.
A given context evaluator can only return results with

one value type, but they can return any of the three result
types depending on the context the evaluator is run in.

The Result subclasses each enable scoring by exposing
the scoreResult() function which takes in a lambda ex-
pression resultScorer which is appropriately applied to
each value in the result and averaged to produce a single
score. Context evaluators use these functions and define
the lambda expression using its respective scoring function.

3.3.5 Explanation

In addition to providing a single Score object for the top-
level specification, the PSL system can offer a comprehen-
sive explanation for that score.

This is accomplished by implementing an object hierarchy
extending the Explanation class. This hierarchy roughly
reflects the structure of the system itself and provides run-
time information regarding the scoring of specifications, fil-
tering of contexts, and results of evaluators. The system
uses the gson library to encode the class structure as a json
file, as shown in listing 5.

The explanation system offers several advantages. First,
because the explanation is comprehensive in showing the
information propagated through the system, it can aid in
debugging. Second, it can serve as a simplified visualiza-
tion of how the evaluator engine works. A graphical user

6

1 public abstract class Specification implements Explainable {

2 public abstract Score evaluate(Context context, boolean evaluateAll);

3 public abstract Specification getSimplifiedSpecification();

4 public abstract SpecificationResultExplanation explainLastResult();

5 }

6

7 public abstract class Constraint implements Explainable {

8 protected ContextEvaluator contextEvaluator;

9 public abstract double score(Context context);

10 public ConstraintResultExplanation explainLastResult() { ... }

11 }

12

13 public abstract class RequireableConstraint extends Constraint {

14 public abstract boolean fulfilled(Context context);

15 }

16

17 public abstract class ContextEvaluator implements Explainable {

18 abstract public Result getValue(Context context);

19 public ContextEvaluatorResultExplanation explainLastResult() { ... }

20 }

Listing 4: Important Class Definitions

1 {

2 "planContext": { ... },

3 "specification": {

4 "constraint": {

5 "evaluator": {

6 "result": "36",

7 "description": "credits"

8 },

9 "description": "less credits"

10 },

11 "score": "valid (100%)",

12 "description": "prefer [1.0] less credits"

13 },

14 "score": "valid (100%)",

15 "description": "simple.psl"

16 }

Listing 5: Example Explanation File

interface could provide the explanation’s information to the
user in an understandable way, improving the usefulness of
the system by helping the student understand why it thinks
certain plans are better than others.

4 Future Work

4.1 Developing the PSL System

The PSL system lays out a framework by which plan evalu-
ation can happen, but degree preferences vary widely from
person to person and many people try to optimize their
plans based on traits others wouldn’t think about. Those
applying this to a broader population could implement more
context evaluators to accommodate these diverse desires.

Such context evaluators would likely eventually require new
value types, but should otherwise not require much change
in the implementation.

Future work on PSL should also include robust debug-
ging, as time constraints prevented such from happening
as of yet. During that process, one could extract the hard-
coded mean and deviance values from the context evaluators
and put them into a robust, external source of truth. Alter-
natively, one could find a dynamic approach to constructing
these values rather than hard coding them.

The explanation system could also be further developed,
to include more helpful information deeper down into the
system (eg show the scoring function values).

4.2 Plan Generation

The most important piece of future work would be to take
the PSL system and apply it towards plan generation. One
might start by implementing a genetic algorithm that uses
PSL as a fitness function, and encodes a degree plan as a
chromosome. One could observe the rate of improvement
the GA offers and how capable such a GA is at providing a
known ”best plan”.

However, such an approach would likely suffer extreme
performance issues, so further work should include digger
deeper into constraint-based searching, strategically limit-
ing the search space, and taking advantage of the design of
the PSL evaluator to better accommodate generation (eg
the continuity of the scoring functions).

5 Conclusion

The PSL system demonstrates how student preferences for
their degree plan can be expressed as a series of specifi-
cations. It demonstrates how a domain-specific language
can facilitate highly complex preferences with a reasonably
simple syntax.

7

The design of the evaluation engine shows how a well-
constructed system, following standard software engineer-
ing practices for quality code, can allow for a customizable
system that can readily accept new context evaluators.

The PSL system shows how a plan’s adherence to a set
of preferences can be mathematically stated and optimized.
The scoring functions allow for a high degree of flexibility
in what degree plans can be optimized towards.

However, the PSL system’s usefulness on its own pales in
comparison to its potential usefulness as a part of a degree
plan generation system.

References

[1] Dennise Adrianto. Comparison using particle swarm
optimization and genetic algorithm for timetable
scheduling. Journal of Computer Science, 10(2):341,
2014.

[2] Esra Aycan and Tolga Ayav. Solving the course
scheduling problem using simulated annealing. In 2009
IEEE International Advance Computing Conference,
pages 462–466. IEEE, 2009.

[3] Sorathan Chaturapruek, Thomas S Dee, Ramesh Jo-
hari, René F Kizilcec, and Mitchell L Stevens. How
a data-driven course planning tool affects college stu-
dents’ gpa: evidence from two field experiments. In
Proceedings of the Fifth Annual ACM Conference on
Learning at Scale, pages 1–10, 2018.

[4] Tim B. Cooper and Jeffrey H. Kingston. The complex-
ity of timetable construction problems. In Edmund
Burke and Peter Ross, editors, Practice and Theory of
Automated Timetabling, volume 1153, pages 281–295.
Springer Berlin Heidelberg. Series Title: Lecture Notes
in Computer Science.

[5] Joshua Eckroth and Ryan Anderson. Tarot: A course
advising system for the future. J. Comput. Sci. Coll.,
34(3):108–116, January 2019.

[6] Wilhelm Erben and Jürgen Keppler. A genetic algo-
rithm solving a weekly course-timetabling problem. In
Edmund Burke and Peter Ross, editors, Practice and
Theory of Automated Timetabling, volume 1153, pages
198–211. Springer Berlin Heidelberg. Series Title: Lec-
ture Notes in Computer Science.

[7] Sadaf Naseem Jat and Shengxiang Yang. A guided
search genetic algorithm for the university course
timetabling problem. 2009.

[8] Rhydian Lewis. A survey of metaheuristic-based tech-
niques for university timetabling problems. 30(1):167–
190.

[9] Junrie B Matias, Arnel C Fajardo, and Ruji P Medina.
A hybrid genetic algorithm for course scheduling and
teaching workload management. In 2018 IEEE 10th In-
ternational Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control,
Environment and Management (HNICEM), pages 1–6.
IEEE, 2018.

[10] Khang Nguyen Tan Tran Minh, Nguyen Dang Thi
Thanh, Khon Trieu Trang, and Nuong Tran Thi Hue.
Using tabu search for solving a high school timetabling
problem. In Advances in intelligent information and
database systems, pages 305–313. Springer, 2010.

[11] Tyler Morrow, Ali R Hurson, and Sahra Sedigh Sar-
vestani. A multi-stage approach to personalized course
selection and scheduling. In 2017 IEEE Interna-
tional Conference on Information Reuse and Integra-
tion (IRI), pages 253–262. IEEE, 2017.

[12] Tyler Morrow, Sahra Sedigh Sarvestani, and Ali R Hur-
son. Algorithmic decision support for personalized edu-
cation. In 2016 IEEE 17th International Conference on
Information Reuse and Integration (IRI), pages 188–
197. IEEE, 2016.

[13] Clemens Nothegger, Alfred Mayer, Andreas Chwatal,
and Günther R. Raidl. Solving the post enrolment
course timetabling problem by ant colony optimization.
194(1):325–339.

[14] A Schaerf. A survey of automated timetabling. page 42.

[15] A. Srisamutr, T. Raruaysong, and V. Mettanant. A
course planning application for undergraduate students
using genetic algorithm. In 2018 Seventh ICT Interna-
tional Student Project Conference (ICT-ISPC), pages
1–5, 2018.

[16] Robert Swanson. Four Year Plan Evaluation System,
12 2021.

[17] Robert Swanson. Prototype: Preference Specification
Language, 5 2021.

[18] Irving van Heuven van Staereling. School timetabling
in theory and practice. Technical report, Technical re-
port, VU University, Amsterdam, Holland, 2012.

8

A Appendix

A.1 PSL Grammar Specification

1 start: (block)+ EOF;

2 block: NAME priorityList? '{' specification+ '}';

3

4 specification:

5 requirementSpecification |

6 preferenceSpecification |

7 specificationList |

8 conditionalSpecification |

9 contextualSpecification;

10

11 requirementSpecification: REQUIRE NOT? requirableConstraint DOT;

12 preferenceSpecification: PREFER NAME? NOT? constraint DOT;

13 specificationList: ('{' specification* '}');

14 conditionalSpecification: IF condition THEN specification (OTHERWISE_IF condition THEN

specification)* (OTHERWISE specification)?;↪→

15 contextualSpecification: FOR (contextLevel WHERE condition | termYearList | weekdayList)

specification;↪→

16

17 condition: requirableConstraint |

18 OPEN_PAREN condition CLOSE_PAREN |

19 OPEN_PAREN condition AND condition CLOSE_PAREN |

20 OPEN_PAREN condition OR condition CLOSE_PAREN |

21 NOT condition ;

22

23 requirableConstraint:

24 equalConstraint |

25 greaterThanConstraint |

26 greaterThanOrEqualConstraint |

27 lessThanConstraint |

28 lessThanOrEqualConstraint |

29 booleanConstraint;

30 equalConstraint: (INT numericEvaluator) | (timeEvaluators AT time) | (termYearEvaluators IN

termYear);↪→

31 booleanConstraint: booleanEvaluators;

32 constraint: requirableConstraint | moreConstraint | lessConstraint;

33 moreConstraint: MORE_ numericEvaluator | timeEvaluators LATER | termYearEvaluators LATER;

34

35 numericEvaluator:

36 totalCredits | totalCreditsFromSet | upperDivisionCredits | totalCourses |

37 totalCoursesFromSet | upperDivisionCourses | meetingMinutes |

38 numCoursesWithProfessor | numTimeBlocks | termsInPlan ;

39 termYearEvaluators: courseTermYear | planStart | planEnd;

40 timeEvaluators: dayStarting | dayEnding | courseStart | courseEnd;

41 booleanEvaluators: meetingAtTimeRange | courseBeforeCourse | coursesInSameTerm | termExists;

Listing 6: A Selection of the PSL ANTLR Grammar

9

	PSL-An Expert System to Evaluate Degree Plans
	Recommended Citation

	Introduction
	Existing Work
	Objective

	PSL Prototype
	Preferences
	Prototype Design
	Scoring
	Weaknesses

	PSL Design
	Overview
	PSL Grammar
	Specifications
	Constraints
	Evaluators

	Evaluation Engine
	Specification
	Constraints
	Context
	Context Evaluators
	Explanation

	Future Work
	Developing the PSL System
	Plan Generation

	Conclusion
	Appendix
	PSL Grammar Specification

