
Taylor University Taylor University 

Pillars at Taylor University Pillars at Taylor University 

Computer Science & Engineering Department Academic Departments & Programs 

12-2021 

Processing and Visualizing Satellite Data Processing and Visualizing Satellite Data 

Caleb Collier 
Taylor University, caleb_collier@taylor.edu 

Follow this and additional works at: https://pillars.taylor.edu/cse 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Collier, Caleb, "Processing and Visualizing Satellite Data" (2021). Computer Science & Engineering 
Department. 1. 
https://pillars.taylor.edu/cse/1 

This Paper is brought to you for free and open access by the Academic Departments & Programs at Pillars at Taylor 
University. It has been accepted for inclusion in Computer Science & Engineering Department by an authorized 
administrator of Pillars at Taylor University. For more information, please contact pillars@taylor.edu. 

https://pillars.taylor.edu/
https://pillars.taylor.edu/cse
https://pillars.taylor.edu/academic-departments
https://pillars.taylor.edu/cse?utm_source=pillars.taylor.edu%2Fcse%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pillars.taylor.edu%2Fcse%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pillars.taylor.edu/cse/1?utm_source=pillars.taylor.edu%2Fcse%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pillars@taylor.edu


Processing and Visualizing Satellite Data

Caleb Collier
Advisor: Dr. Stefan Brandle

December 10, 2021

Abstract

Satellites are a useful way of gathering data at high altitudes. To be able to
properly view the data, however, there are many important steps that one must
take to ensure the data received is readable and usable. The data must be
transmitted from the satellite to the ground, then must be decommuted and
can then be used in various ways. This paper is an exploration of various ways
of processing and visualizing data received from satellites, as well as various
ways of using the data.

1 Introduction

There are many aspects of satellites that are important to the discovery of
new things. Among the software related practices in the satellite field, the
processing and visualization of data received from a satellite is an important
part of discovery. The first satellite launched was Sputnik 1 in 1957 [14]. It
orbited for around 3 months before hitting the ground. Today, satellites can
stay in orbit for much longer and are much more robust. While communication
satellites today can both send and receive data, the main focus of this paper
is how satellites send data to ground stations on Earth, how to interpret the
received data, and how to visualize the data.

2 Personal Background

Over the summer of 2021, I worked for a company called NearSpace Launch
(NSL). NSL creates satellites that send clients specific data. Prior to working
at NSL, I had zero experience in working with satellite data. As I worked over
the summer, I learned more about processing satellite data. Some of the ideas
I will explain will be in the context of NSL, but these ideas are not only used
by NSL.

1



3 Globalstar

NearSpace Launch uses a service from Globalstar. Globalstar is a popular com-
munications company that uses a constellation of low Earth orbit satellites for
data communication [12]. A satellite constellation consists of multiple satellites
(24 in Globalstar’s case)[2] orbiting around the Earth that can provide coverage
all around the Earth [13].

3.1 Simplex Radios

One way that Globalstar sends data back and forth is through simplex commu-
nication. Simplex communication is a communication channel that only sends
data in one direction [10].

3.2 Information Path

The satellite that is sent into orbit will have various sensors on it to collect data.
This data, once collected by the sensors, is sent to the Globalstar satellites via
simplex radio. This information is then sent to Globalstar’s ground station, and
is then sent to the client via the internet. A more detailed diagram is shown in
Figure 1.

Figure 1: Globalstar’s data communication path

2



4 Data Format and Storage of Data

When NSL receives data from Globalstar, it is received through the internet as
an XML document. With this string, NSL receives the timestamp that it was
transmitted from Globalstar to them, and the time when NSL receives the data.
In this XML string, there is some information such as the simplex radio ID, and
the actual data that came from the satellite. This XML document is stored in a
database and then needs to be parsed. The string of actual data that is received
is in a hexadecimal format. The length of the string is determined by NSL or
NSL’s client.

5 Decommutation

The data received in its raw form is not very useful, so it needs to be parsed
and then NSL can receive the values in a more useful form. Each string of data
begins with 8 bits, or 2 hexadecimal characters. These 8 bits are known as the
function code, and will determine how the string is to be parsed. Each string
is divided into a specific number of bits specified by the client. Each division
will represent one data value, like altitude, velocity, etc. Once the hex string
is stored in the database, a various number of conversion functions are used to
convert from hexadecimal to the specified format.

Figure 2: A partial parsing of a hexadecimal string received from Globalstar

5.1 Stitching Multiple Packets Together

Sometimes there will be more data wanted from a satellite than a single packet
can hold. To account for this, I made a program that took multiple packets and
combined them into one. Which packets are stitched together is up to the one
launching the satellite. In NSL’s case, there were two packets, between which
contained lat, lon, and alt, as well as VX, VY, and VZ among other things. If
the program stitches together a packet with a function code F1 and a packet
with a function code F2, it must check two things before stitching them together.
First, it must check if the sequence codes match. Each sequence code starts at
0 and climbs to 255. After the sequence code hits 255, it rolls back to 0 and
climbs to 255 again. This is not enough to ensure that the proper data will be
stitched together, so it will also check the time the packet was sent. If a packet
with the function code F1 and a sequence number of 2 was sent at 10:00:00 UTC
on one day, but a packet with the function code F2 and a sequence number of

3



2 was sent at 10:00:00 UTC on the next day, those two packets would not be
stitched together as they do not correspond.

5.1.1 Stitching Packets Together Based on Time

For most cases, the algorithm described above connects two packets together
very well. However, because of the way that the time is stored, there are some
edge cases that will cause this algorithm to break. The time is stored as a
GNSS time standard. GNSS time is stored in weeks and seconds. When the
week changes from one week to another, the GNSS seconds roll back to 0. This
presents a problem if one packet is sent right before the change of a week and
the other packet is sent right after the change of the week. Before stitching
together packets, the algorithm must also check if one of the packets was sent
at the change of the week.

6 Satellite Location

One important piece of data that should be known for a given satellite is the
location in its orbit. Latitude, longitude, and altitude can give some idea of
where a satellite is at a given time, but it is not as precise as may be desired.
For more precise locations, there are two formats, either an ephemeris or a TLE.

6.1 Ephemeris

Ephemerides have been used since the first millennium BC, and can be used for
naturally occurring or artificial satellites. An ephemeris can be used to calculate
the path and position of a given object at any time. Not only can ephemerides
be used to view positions in the past and present, they can be used to predict a
future orbit. When calculating an orbit with an ephemeris, however, one needs
to be aware of how far ahead in the future the prediction is. It is best to only
predict an orbit about 2 or 3 days in advance from the present. Any time out
of this window may be considerably less accurate. The layout of an ephemeris
is a table of various properties of whatever object is being tracked. There is not
one standard of ephemerides, so what properties are tracked may be different.
The most common properties tracked by an ephemeris are the X, Y, and Z
location of the object, as well as the velocities in the X, Y, and Z direction.
Ephemerides are large but are very precise, and much more precise than a TLE
(which is discussed in the subsection below).

6.2 TLE

A two-line element set (TLE) is another way of representing the position of a
satellite in an orbit. A TLE is much more concise than an ephemeris, but not
as precise. TLEs can also be used to predict an orbital path of a satellite in the
future, or can be used to determine what the orbital path was in the past. A
TLE consists of two lines of information in a standard format. TLEs are used

4



by NORAD to keep track of artificial satellites currently in orbit around the
Earth. While TLEs are useful, they do need to be generated every couple of
days to ensure that they are still up to date with the current orbit.

6.3 Ephemeris and TLE Generation Webpage

During my summer at NSL, I made a webpage that would generate either an
ephemeris or a TLE for any given satellite. While a decent portion of my work
went into creating the webpage itself, a large portion of my work went into
connecting various data paths together. When the user clicks the button to
generate an ephemeris/TLE, the first thing that happens is the fetching of data
for a given satellite. A query is run on a database to get the X, Y, and Z values,
as well as the velocities VX, VY, and VZ. Once they are all fetched, these values
get passed to another server that contains software known as FreeFlyer. Two of
my colleagues created a program that would generate a TLE or ephemeris from
those given parameters, as well as a time window. Once the ephemeris or TLE
was created, the data would be passed back to the previous server and then was
displayed on the webpage.

Figure 3: A TLE generated from the NSL webpage

7 Data Visualization

Receiving data from satellites is extremely useful, but with the sheer amount of
data that one may get from them requires some sort of data visualization. There
are many ways to visualize data recieved from a satellite. One needs to decide
how exactly they are planning to do so (for example, whether the visualization
will be in 2D or 3D), and one also needs to decide what data to visualize. A
large amount of data may come back, but only some of it is related to each
other. One example of this may be taking the altitude of a balloon and relating
it to the external temperature as shown in Figure 4.

5



Figure 4: A 2D visualization of the altitude (blue) vs external temperature (red)
over time.

7.1 Choosing Software

There are many types of software and libraries that can visualize data. For
2D visualization, one can use proprietary software like Tableau, or on greater
scales one may use something like WebFOCUS. There are some libraries local
to Python that are powerful in data visualization. One such library is pandas.
Pandas is used for both data manipulation and data visualization. I had decided
that for my data visualization, I wanted to visualize data in 3D instead of 2D.
In my research, I had come across three JavaScript libraries to choose from that
offer 3D visualization. Those three were Three.js, CesiumJS, and D3.js.

7.1.1 Deciding What Software to Use

Originally, I had not heard of CesiumJS before. My plan was to use either
Three.js or D3.js to visualize data. D3 seemed more promising to me than
Three.js, but I knew that it was going to be hard to visualize this type of
data in 3D becuase while D3 is powerful, it was not created for this sort of
data directly. I went to talk to Dr. Brandle, my research advisor, and he had
mentioned CesiumJS. After looking at what Cesium had to offer, I decided that
I was going to use that to visualize my data.

8 CesiumJS

Cesium was created by the company AGI. It is an API that is well known in the
space data visualization community. Cesium has been open source from 2012,
and will continue to be indefinitely [1]. One can create with Cesium and host
their creation on the cloud using Cesium Ion, but I decided that I was going
to host it locally, so I created a simple web server using Apache. After I had
created my server, I received an API key for Cesium and got to work on figuring
out how to visualize data.

8.1 First Attempt at Data Visualization

First, I had to find some data to work with. After talking with my research advi-
sor, I decided to use satellite data from a recent launch from NearSpace Launch.

6



The satellite’s name was TAGSAT-1. Using NSL’s simplex console, I down-
loaded the altitude, latitude, and longitude of the satellite that was launched as
a CSV file. Once I had the data, I needed to learn how Cesium works, and what
I could use to visualize the data I had just received. I came across a tutorial
that was used to visualize the flight path of an airplane. I decided that for a
first test, I would use this tutorial to get used to Cesium and see if this type of
visualization would work. I took the data from TAGSAT-1 and turned it into
a JSON string for Cesium to use. After following the tutorial, I had created a
very basic visualization of the data as shown in Figure 5.

Figure 5: Visualization of TAGSAT-1 data.

Obviously, this visualization is not accurate of a proper orbit for many rea-
sons. However, this visualization was useful for me and my development of data
visualization. For one, this visualization showed me that, assuming there are no
underlying problems in the way I visualized everything, the data I received from
this satellite is faulty. After discussing the results with my advisor, he confirmed
that indeed, only one single point of data was confirmed to be correct. Without
this visualization, I would not have known that unless I explicitly asked him.
Second, this visualization showed me that using the type of visualization used
for flight path tracking would not be a good way to visualize data for multiple
reasons. Creating the data as a JSON file was too much of a process, especially if
I had even more data points than I had previously, which is always a possibility.
Also, when direction is changed according to latitude and altitude, it abruptly
does so, unlike an orbit which is a spherical (possibly elliptical) and smooth
path around the Earth. Because of the blunders of this type of visualization, I
knew that I needed to find another way to go about my visualization.

7



8.2 Switching Data Sets

By the time I had finished my first attempt at data visualization, the semester
had ended and I began to work at NSL. During my time at NSL, a second
TAGSAT satellite was launched. The data we recieved was much more reliable,
and from it a TLE and Ephemeris format were able to be generated. Because
I had more familiarity with the way this satellite was set up, and because the
data was more reliable than TAGSAT-1, I decided to switch the data set from
TAGSAT-1s data to TAGSAT-2s.

8.3 Further Attempts at Visualization

After switching data sets, I went back to Cesium’s website to see if there was
anything that would show a smoother and more consistent orbit around the
Earth. The website has a showcase of different ways that Cesium can be used,
along with the code. After perusing some code examples, I came across an
example titled CZML. As shown below in Figure 6, it consists of multiple orbital
paths, some of which are Low Earth orbits like the one that I have, and others
that are much further from the Earth.

Figure 6: Smoothed orbits of multiple satellites.

This was a highly desirable way to visualize an orbit, so I began doing

8



research on how I would be able to accomplish this. I discovered that Cesium
had made a string known as a .czml. The .czml file is a valid JSON string, but
is much easier to comprehend and create when compared to the previous JSON
string I had created in my previous attempt. The main idea of this string is
that it describes certain attributes and positions of a given object (in this case a
satellite) across time. I spent a lot of time trying to understand the exact format
of this string. Cesium has put some documentation on their GitHub about the
format of CZMLs, but it is lackluster and could use a bit more explanation.
Searching for more explanation, I discovered a python package that will take
the TLE of a satellite and generate a CZML file for it. After installing and
testing it out, I received the results I was looking for as shown in Figure 7. I
attempted to use the TLE calculated by the webpage that I had created at NSL
over the summer, but that did not seem to work very well. Instead, I decided
to go to a website known as Celestrak to get a TLE. I found the TLE for our
satellite and it worked much better.

Figure 7: Orbit of TAGSAT-2 created with the python package satellite-czml

9

https://github.com/AnalyticalGraphicsInc/czml-writer/wiki/CZML-Guide
https://pypi.org/project/satellite-czml/


9 Conclusion and Future Work

Over the summer and in the process of writing this paper, I have learned a
lot about the processing and visualization of satellite data. I have certainly
learned that the processing of data is an important part of data visualization.
Processing data into a workable format makes data visualization much easier
than if you were to have raw data, and is an essential part of data visualization.

Discovering the python package that generates a .czml file based on a given
TLE has opened the possibility for more research in this type of visualization.
There are some papers that discuss delivering satellite data in real time. While
TLEs need to be updated every couple of days, I believe that it would be useful
to update an orbital path in real time given a TLE. The idea would be to use
Celestrak to feed the TLE of a given satellite into a python script whenever the
TLE is updated. Once it generates the .czml file, the script would replace the
old file with the new file in the server. This would differ from the other papers
I came across in my research as it would be updating the satellite orbit in real
time as opposed to other kinds of data.

Bibliography

[1] AGI. CesiumJS. 2021. url: https://cesium.com/platform/cesiumjs/
(visited on 10/11/2021).

[2] Globalstar. Globalstar Constellations. 2021. url: https://www.globalstar.
com/en-us/about/our-technology (visited on 09/26/2021).

[3] Dr. T. S. Kelso. Celestrak. 2021. url: https://www.celestrak.com/
NORAD/elements/stations.txt (visited on 10/27/2021).

[4] NearSpace Launch. “Globalstar Communication Link for CubeSats: TSAT,
GEARRS1, and GEARRS2”. In: 2014.

[5] NearSpace Launch. “TSAT Globalstar ELaNa-5 Extremely Low-Earth Or-
bit (ELEO) Satellite”. In: 2014.

[6] NSL. NearSpace Launch. 2021. url: https://data2.nsldata.com/

console/ (visited on 10/27/2021).

[7] Brandon Rhodes. sgp4. 2019. url: https://pypi.org/project/sgp4/
(visited on 10/27/2021).

[8] RhodesMill. Skyfield. 2019. url: https://rhodesmill.org/skyfield/
(visited on 10/27/2021).

[9] a.i. solutions. FreeFlyer. 2021. url: https://ai-solutions.com/freeflyer-
astrodynamic-software/ (visited on 11/02/2021).

[10] “The Authoritative Dictionary of IEEE Standards Terms, Seventh Edi-
tion”. In: IEEE Std 100-2000 (2000), p. 1053. doi: 10.1109/IEEESTD.
2000.322230.

10

https://cesium.com/platform/cesiumjs/
https://www.globalstar.com/en-us/about/our-technology
https://www.globalstar.com/en-us/about/our-technology
https://www.celestrak.com/NORAD/elements/stations.txt
https://www.celestrak.com/NORAD/elements/stations.txt
https://data2.nsldata.com/console/
https://data2.nsldata.com/console/
https://pypi.org/project/sgp4/
https://rhodesmill.org/skyfield/
https://ai-solutions.com/freeflyer-astrodynamic-software/
https://ai-solutions.com/freeflyer-astrodynamic-software/
https://doi.org/10.1109/IEEESTD.2000.322230
https://doi.org/10.1109/IEEESTD.2000.322230


[11] Wikipedia contributors. Ephemeris — Wikipedia, The Free Encyclopedia.
[Online; accessed 2-November-2021]. 2021. url: https://en.wikipedia.
org/wiki/Ephemeris.

[12] Wikipedia contributors. Globalstar — Wikipedia, The Free Encyclopedia.
[Online; accessed 26-September-2021]. 2021. url: https://en.wikipedia.
org/wiki/Globalstar.

[13] Wikipedia contributors. Satellite Constellation — Wikipedia, The Free
Encyclopedia. [Online; accessed 26-September-2021]. 2021. url: https:
//en.wikipedia.org/wiki/Satellite_constellation.

[14] Wikipedia contributors. Sputnik 1 — Wikipedia, The Free Encyclopedia.
[Online; accessed 26-September-2021]. 2021. url: https://en.wikipedia.
org/wiki/Sputnik_1.

[15] Wikipedia contributors. Two-line element set — Wikipedia, The Free En-
cyclopedia. [Online; accessed 27-October-2021]. 2021. url: https://en.
wikipedia.org/wiki/Two-line_element_set.

[16] Lan Zhao et al. “Delivering Real-Time Satellite Data to a Broader Au-
dience”. In: Proceedings of the 5th Grid Computing Environments Work-
shop. GCE ’09. Portland, Oregon: Association for Computing Machinery,
2009. isbn: 9781605588872. url: https://doi.org/10.1145/1658260.
1658264.

11

https://en.wikipedia.org/wiki/Ephemeris
https://en.wikipedia.org/wiki/Ephemeris
https://en.wikipedia.org/wiki/Globalstar
https://en.wikipedia.org/wiki/Globalstar
https://en.wikipedia.org/wiki/Satellite_constellation
https://en.wikipedia.org/wiki/Satellite_constellation
https://en.wikipedia.org/wiki/Sputnik_1
https://en.wikipedia.org/wiki/Sputnik_1
https://en.wikipedia.org/wiki/Two-line_element_set
https://en.wikipedia.org/wiki/Two-line_element_set
https://doi.org/10.1145/1658260.1658264
https://doi.org/10.1145/1658260.1658264

	Processing and Visualizing Satellite Data
	Recommended Citation

	Introduction
	Personal Background
	Globalstar
	Simplex Radios
	Information Path

	Data Format and Storage of Data
	Decommutation
	Stitching Multiple Packets Together
	Stitching Packets Together Based on Time


	Satellite Location
	Ephemeris
	TLE
	Ephemeris and TLE Generation Webpage

	Data Visualization
	Choosing Software
	Deciding What Software to Use


	CesiumJS
	First Attempt at Data Visualization
	Switching Data Sets
	Further Attempts at Visualization

	Conclusion and Future Work

