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composition operators

Abstract.We define a truncated composition operator on the spaces Pn of n-degree
polynomials with complex coefficients. After doing so, we concern ourselves with
the complex symmetry of such operators, that is, whether there is an orthonormal
basis that gives them a symmetric matrix representation.
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1 Introduction

Symmetric matrices, whose entries form a mirror image across the diagonal, are a familiar
concept in the study of linear algebra and its applications. The concept of a complex sym-
metric operator is similar in nature and has been shown to have a wide variety of interesting
applications within operator theory (Garcia, Putinar [2]). An operator is complex symmetric
if it has a symmetric matrix representation with respect to some orthonormal basis. This
is distinct from a self-adjoint matrix, in which entries across the diagonal are the complex
conjugate of one another rather than identical.

In recent years, researchers have shown an interest in the connection between complex
symmetry and composition operators (Narayan et. al.[4]). On any space of analytic functions,
the composition operator with symbol Cϕ can be defined by Cϕf = f ◦ ϕ. Composition
operators are most commonly studied on H2, the Hilbert space of analytic functions f(z) =∑∞

k=0 akz
k from the open unit disk D to C where ||f ||2 =

∑∞
k=0 |ak|2 <∞ (square-summable

Taylor series). To make such operators work in finite dimensions, we consider them on the
polynomial subspace Pn of H2: the space of all polynomials of degree n or less with complex
coefficients. To make a composition operator with any given symbol map Pn back into Pn,
we view the operator as map from Pn to H2, and then project the image back onto the
polynomial space Pn by removing all terms of degree n + 1 or higher (truncation).

We write PnCϕ for the operator that maps Pn to itself and call it a truncated composition
operator. This is equivalent to considering the upper-left block of the matrix representation
of Cϕ on the Hardy space H2 in its standard basis. In particular, the traditional dot product
used in Rn aligns with the inner product that Pn inherits as a subspace of H2, allowing us to
use familiar tools, and to study complex symmetry in a finite-dimensional setting, yet with
implications for study on infinite-dimensional function spaces. Although our work could
technically be defined for a variety of symbols ϕ so that Cϕ acts on Pn, our ultimate goal is
to inform further work on the Hardy space H2. To that end, we will focus on symbols that
are self-maps of D.

For example, let ϕ(z) = z
2−z = z

2
+ z2

4
+ z3

8
+ . . . and f(z) = z2. Then Cϕf will result in

the following Taylor series.

(Cϕf)(z) = (f ◦ ϕ)(z) = (ϕ2)(z) =
1

4
z2 +

2

8
z3 +

3

16
z4 +

4

32
z5 +

5

64
z6 + · · ·

This means that Cϕ acts as a map from Pn to H2; the operator Pn will truncate the
higher-degree terms and define PnCϕ as a self-map of Pn. Here, we have

(PnCϕf)(z) = (Pnϕ
2)(z) =

1

4
z2 +

2

8
z3 + · · ·+ n− 1

2n
zn.

Let ϕ : D→ D be some analytic function with Taylor series
∑∞

k=0 akz
k. With respect to

the canonical basis {1, z, z2, z3, · · · , zn}, PnCϕ can be written as an (n+ 1)× (n+ 1) matrix.
The columns of this matrix correspond to PnCϕ acting on each element of the basis. Figure
1 shows P2Cϕ when ϕ(z) = z

2−z .
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1 0 0
0 1

2
0

0 1
4

1
4


Figure 1: Matrix representation of P2Cϕ

This matrix would also represent the upper left hand corner of the infinite matrix repre-
sentation of Cϕ with respect to the same canonical basis (now with infinitely many elements).

Next, we define a complex symmetric operator and give an example of a truncated com-
position operator exhibiting this property.

Definition. An operator T is said to be a complex symmetric operator (CSO) if there is
an orthonormal basis with respect to which T has a symmetric matrix representation (which
may contain complex entries).

As an example of a complex symmetric operator, we again consider ϕ(z) = z
2−z . With

respect to the orthonormal basis{
1,

(1 +
√

2)e
3iπ
8√

4 + 2
√

2
z +

e
3iπ
8√

4 + 2
√

2
z2,

(1−
√

2)e
−iπ
8√

4− 2
√

2
z +

e
−iπ
8√

4− 2
√

2
z2

}
,

P2Cϕ has the following symmetric matrix representation:1 0 0

0 1
8
(3 +

√
2) i

8

0 i
8

1
8
(3−

√
2)


Note that this matrix is symmetric, but not self-adjoint. That is, the complex entries are
identical over the diagonal and not the complex conjugate of one another.

In the remainder of this paper, we will explore the question of when a truncated com-
position operator is complex symmetric. In Section 2, we describe our methodology and
introduce the Strong Angle Test, which will be used throughout the remainder of the paper.
We will then explore the relationship between the complex symmetry of Cϕ and P2Cϕ for
various symbols ϕ(z). Finally, we will determine symbols ϕ(z) for which PnCϕ is represented
by a lower triangular matrix in Section 3, and for which P2Cϕ is represented by an upper
triangular matrix in Section 4, with respect to the canonical basis. To conclude, we will
present in Section 5 a few questions for further consideration in the future.

2 Methodology and Initial Findings

It is often difficult to find the correct orthonormal basis in order to determine if an operator
is complex symmetric. The following theorem allows us to determine whether such a basis
exists using just one matrix representation of our operator.
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Theorem (The Strong Angle Test [1]). Given an n × n matrix M , let u1,u2...un be the
unit eigenvectors of M and let v1,v2...vn be the corresponding unit eigenvectors of M∗, the
conjugate transpose of M . Then M is a CSO if and only if

〈ui,uj〉〈uj,uk〉〈uk,ui〉 = 〈vi,vj〉〈vj,vk〉〈vk,vi〉

for all 1 ≤ i ≤ j ≤ k ≤ n.

Example. Let ϕ(z) = z
2−z . With respect to the basis {1, z, z2}, P2Cϕ has the following

matrix representation and eigenvectors: 1 0 0
0 1

2
0

0 1
4

1
4



u1 =

1
0
0

u2 =

 0
1√
2
1√
2

u3 =

0
0
1


v1 =

1
0
0

v2 =

0
1
0

v3 =

 0
− 1√

2
1√
2

 .

From these eigenvectors, we have the following:

〈u1,u2〉〈u2,u3〉〈u3,u1〉 = 0× 1√
2
× 0 = 0

〈v1,v2〉〈v2,v3〉〈v3,v1〉 = 0×− 1√
2
× 0 = 0.

Thus, P2Cϕ is a complex symmetric operator by the Strong Angle Test.

We wish to examine whether the property of complex symmetry carries over from Cϕ to
PnCϕ. We summarize the results from examining the case of P2Cϕ for 4 different definitions
of ϕ. The table below displays the results of testing P2Cϕ using the Strong Angle Test
alongside knowledge of Cϕ from the work in Narayan et.al. [4]. The symbol Xindicates that
the operator is a complex symmetric operator for the given ϕ and × indicates that it is not.
Note that the complex symmetry of Cϕ seems to have no bearing on the complex symmetry
of P2Cϕ, one way or the other.

Although we found some truncated composition operators that were complex symmetric,
our main result was that for the symbols we considered, complex symmetry does not hold
for any particular symbol ϕ as the dimension of the truncation was increased. In the next
sections, we give our justification for this result, considering only symbols that induce upper-
and lower-triangular matrix representations. This was inspired by our knowledge of the work
of Narayan et. al. [4], which only considered symbols with this property. In every case, we
consider symbols whose Taylor series have only real coefficients.
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ϕ P2Cϕ Cϕ

1
2
z + 1

2
× ×

1
3
z + 1

3
× X

z
2−z X ×
z

3−z X X

Table 1: Complex Symmetry of Operators given ϕ

3 The Lower Triangular Case

3.1 Examining P2Cϕ

For ϕ(z) =
∑∞

k=0 akz
k with a0 = 0, the matrix representation of P2Cϕ is lower triangular.

1 0 0
0 a1 0
0 a2 a1

2


Figure 2: Matrix of P2Cϕ with a0 = 0

Here, f(z) ≡ 1 is a unit eigenvector for both P2Cϕ and (P2Cϕ)∗, while all of the other
unit eigenvectors for both operators do not have a constant term. Therefore, for all a1 and
a2, 〈u1,u2〉 = 〈v1,v2〉 = 0. So, P2Cϕ is always a complex symmetric operator by the Strong
Angle Test. When will symbols of the same form produce complex symmetric PnCϕ for
larger values of n?

3.2 Examining PnCϕ, n > 2

For further study, we consider PnCϕ where ϕ(z) = a1z + a2z
2. For the following, we take

advantage of the fact that for PnCϕ, 〈u1,ui〉 = 〈v1,vi〉 = 0 for all 2 ≤ i ≤ n + 1.



Page 48 RHIT Undergrad. Math. J., Vol. 18, No. 1

Figure 3: Values of a1 and a2 for which P3Cϕ is a CSO.

The graph in Figure 3 shows values of a1 and a2 for which P3Cϕ with ϕ(z) = a1z + a2z
2

is complex symmetric by the Strong Angle Test. The shaded region represents symbols that
map the open unit interval to itself (those in which |a1| + |a2| < 1), which is our area of
interest.

Figure 4: The Strong Angle Test on P4Cϕ

The four equations produced by applying the Strong Angle Test to P4Cϕ are graphed in
Figure 4. There are at most two points satisfying all 4 equations when both coefficients are
non-zero.
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Figure 5: A closer view of Figure 4 along with Figure 3

In Figure 5, it appears that the four curves intersect near a1 = .569 and a2 = .356. The
black line represents the curve plotted in Figure 3, which does not pass near this point. So,
if there is a function ϕ(z) = a1z + a2z

2 for which P4Cϕ is complex symmetric, the previous
truncation P3Cϕ was not.

Figure 6: The Strong Angle Test on P5Cϕ

By applying the same approach to P5Cϕ, the resulting system of equations has no solution.
This can be seen in Figure 6. Therefore, there is no ϕ(z) = a1z + a2z

2 for which P5Cϕ is
complex symmetric.

In summary, it appears that there is no ϕ(z) = a1z + a1z
2 for which PnCϕ is a complex

symmetric operator for all n. Moreover, we seem to lose a dimension in our solution set for
each larger value of n. It seems that by forcing each truncation to be in terms of the same
coefficients, we are limiting ourselves too far. In order to preserve complex symmetry from
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one truncation to the next, perhaps ϕ needs to introduce new coefficients into the corre-
sponding matrix.

Conjecture. If ϕ has a finite Taylor series, then there exists n such that PnCϕ is not a
complex symmetric operator.

4 Upper Triangular Case, P2Cϕ

For ϕ(z) =
∑∞

k=0 akz
k with a2 = 0, the matrix representation of P2Cϕ is upper triangular.1 a0 a0

2

0 a1 2a0a1
0 0 a1

2


Figure 7: Matrix of P2Cϕ with a2 = 0

If a0 = 0, the matrix above will be diagonal, and therefore symmetric. Other than this
trivial solution, there are no real values of a0 and a1 for which P2Cϕ is complex symmetric
by the Strong Angle Test.

5 Further Questions

We conclude with some questions for further research.

1. For ϕ(z)=a1z, PnCϕ is a CSO for all n because the corresponding matrix will always
be diagonal. Besides this trivial case, are there any symbols ϕ for which PnCϕ is a
CSO for all n?

2. Composition operators on H2 that are complex symmetric have yet to be completely
classified, particularly in the difficult case when ϕ is not linear-fractional. Can trun-
cated composition operators help solve this problem?

3. What other properties beyond complex symmetry, meaningful in both finite and infinite
dimensions, can be studied for truncated composition operators?
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