Taylor University

Pillars at Taylor University

Computer Science & Engineering Department Academic Departments & Programs

1-2022

Panic Engine - A Game Engine

Zachary Winters
Taylor University

Follow this and additional works at: https://pillars.taylor.edu/cse

b Part of the Computer Sciences Commons

Recommended Citation
Winters, Zachary, "Panic Engine - A Game Engine" (2022). Computer Science & Engineering Department. 5.
https://pillars.taylor.edu/cse/5

This Poster is brought to you for free and open access by the Academic Departments & Programs at Pillars at
Taylor University. It has been accepted for inclusion in Computer Science & Engineering Department by an
authorized administrator of Pillars at Taylor University. For more information, please contact pillars@taylor.edu.

https://pillars.taylor.edu/
https://pillars.taylor.edu/cse
https://pillars.taylor.edu/academic-departments
https://pillars.taylor.edu/cse?utm_source=pillars.taylor.edu%2Fcse%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pillars.taylor.edu%2Fcse%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pillars.taylor.edu/cse/5?utm_source=pillars.taylor.edu%2Fcse%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pillars@taylor.edu

%w%ffl

Introduction

The PANIC engine is a WebGL and

three.js based game engine. The base
concept and name for this game engine
comes from an early iteration with a two-
hour deadline, hence the name "PANIC." The
project evolved through different iterations,
and one is still available to play on the web. % [&6

The goal of this project was to implement (Online version of pAN,c)
additional functionality, including input
controllers, entity systems/scripting, and o>, %&

(The original PANIC game)

Input System

When dealing with user inputs, two routes
can be taken: either an event-driven
architecture or a polling architecture. The (A joystick gamepad)
old implementation was based on input
polling and was extremely limited in its
scope. To remedy this, an event
management system was created, which
handles, emits, and aggregates events.

Using this event system, inputs such as a keyboard,
mouse, or game controller can be plugged in and easily

Collision

The original collision of the engine was
based around the AABB model, but led to

problems when rotating entities and (Players colliding!)
introduced clipping. The new system p
implemented oriented bounding boxes (OBB), o

allowing for rotated box collisions.

This new system uses the entity JSON
format to generate multiple OBBs, a bounding
OBB, and a bounding sphere which are checked
sequentially to determine collisions.

detected. This system is accessible by entities within the

collision detection. While the game engine E ,.,a
engine to access and receive data from.

is not fully complete, these are the base t““
structures that need to be in place before @gf‘-“ a..
additional development.

Conclusion

The main goal of this project was to get
many of the technical aspects finished that
I've been dreading. Designing the input
system allowed me to explore event
management as well as tackling
implementing gamepad input. The entity
system came together effectively by using
the previous event system and linked lists
within a spatial hash grid. Collision Ne‘"":'s”,“ f’f PANIC)
developments allowed for more exploration @
into oriented bounding boxes as well as the
Separating Axis Theorem for more accurate
collision detection. Each of these goals was
completed successfully and functionally.

Entity System

Entities within the engine are generated

using JSON. These entities were initially
The engine's code base is written in JS and limited in their function, but through use of (A group of fish entities)

structured using ES6 modules. This allows for § the event system and a new action system,

code cleanliness and easy maintenance, but % i ¢ poves) entities can have custom action scripts.
can cause network issues when importing all These scripts can be bound to input and

of the individual scripts. As a first step, Node other events emitted by the engine.

and NPM (Node Package Manager) were installed e Entities with their new functions required

allowing additional packages to be accessed easily. a way to be tracked through the engine. A

To fix the network issues, Rollup was installed which spatial hash grid data structure was

builds the project into a single JS file. Rollup’s file implemented allowing for quick access
minification and real-time building also helped development. and simple nearby neighbor retrieval.

Packaging

(An example JSON file)

Technologies Used

Future Hopes

Revisiting this project has been a joy and brought back many memories of
working on past iterations. | hope to continue working on this project as a hobby
and implement more new features. | am currently considering a custom scripting
language, world creation/loading, and peer-to-peer multiplayer for the future.

4

three.js

(The hopeful progression of the PANIC Engine) (Three.js, Rollup, WebGL, NPM, and NodeJS)

	Panic Engine - A Game Engine
	Recommended Citation

	poster

