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NUMERICAL RANGE OF STRICTLY TRIANGULAR MATRICES OVER FINITE

FIELDS∗

ARIEL RUSSELL †

Abstract. In this paper we investigate the numerical range of 3×3 matrices over finite fields, particularly when the matrix

is strictly triangular. We provide a conjecture for this case that extends to n × n matrices for n ≥ 3 and also provide sample

code for generating the numerical range.
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1. Introduction. Numerical ranges of matrices over C have been studied extensively, most notably by

Hausdorff, Toeplitz, and Kippenhahn. Investigation into numerical ranges over finite fields was initiated in

[3] and has been continued in several papers of Ballico (see e.g. [1], [2]). Here we require our field to be of

characteristic p where p ≡ 3 mod 4, ensuring that the element −1 is not a quadratic residue in Zp, so that

i has a proper analog to its use in C.

Let p be a prime congruent to 3 mod 4, and define Zp[i] as the Galois Field of order p2 in the form

{a + bi : a, b ∈ Z}. Mn(Zp[i]) denotes the set of n × n matrices with entries in Zp[i]. The numerical range

of matrix M ∈ Mn(Zp[i]) is defined as W (M) = {x∗Mx : x ∈ Zp[i]
n
, ∥x∥2 = x∗x = 1} with x∗ representing

the conjugate transpose of x. Thus, W (M) forms a set in Zp[i]. The authors in [3] also introduce the

concept of the k-th numerical range, Wk(M) = {x∗Mx : x ∈ Zp[i]
n
, ∥x∥2 = x∗x = k ∈ Zp}. (Here, then,

W (M) = W1(M).)

In [3], work is primarily focused on upper triangular 2 × 2 matrices. In no 2 × 2 matrix do we see a

numerical range that includes every element of Zp[i]. It seems one more dimension is needed: in all of our

testing, every strictly triangular matrix of dimension 3 or higher had W (M) = Zp[i]. The goal of this paper

is to make as much progress towards that conjecture as possible.

2. Preliminaries. Our proofs in the following sections depend on some key tools. In particular, we

frequently attempt to remove one of the entries of an input vector x from the expression x∗Mx, so that the

missing entry can ensure that ∥x∥2 = 1. The validity of this technique comes from the following two lemmas;

the first justifies the second.

Lemma 2.1. [3, Lemma 2.1] For all primes p congruent to 3 mod 4, and for all k ∈ Zp, there exists

t, s ∈ Zp for which t2 + s2 = k.

Lemma 2.2. [6, Lemma 5] Let p be a prime congruent to 3 mod 4. For all k ∈ Zp and all x ∈ Zp[i],

there exists a y ∈ Zp[i] for which |x|2 + |y|2 ≡ k mod p.

More generally, we will often use unitary equivalence, scaling, and shifting to simplify our calculations.

∗Funded by Taylor University Women’s Giving Circle.
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In particular, since for all of our work the resulting numerical range is all of Zp[i], any scaling or shifting

leaves the result invariant.

Definition 2.1. [3, Definition 2.5] Let p be a prime congruent to 3 modulo 4 and let U ∈ Mn(Zp[i]).

We call U a unitary matrix if U∗U = I.

Lemma 2.3. [3, Lemma 2.6] Let M,U ∈ Mn(Zp[i]) with U unitary and p a prime congruent to 3 mod 4.

Then, W (M) = W (U∗MU).

Lemma 2.4. [3, Lemma 2.7] Let p be a prime congruent to 3 mod 4 and let M ∈ Mn(Zp[i]). For any

a, b ∈ Zp[i] we have W (aM + bI) = aW (M) + b.

3. A 0 entry above the diagonal. The following two lemmas appear in an oversimplified form in [6]

and in a setting too complex for our needs in [2], and so are reconstructed here. They also have farther-

reaching implications than noted in either of those papers, as seen later in this section.

Lemma 3.1. For all primes p ≡ 3 mod 4, W (M) = Zp[i] where M ∈ M3(Zp[i]) is given by

M =

0 0 a

0 0 0

0 0 0


with a ̸= 0 in Zp[i], or any other 3× 3 matrix with a single non-zero entry in Zp[i] off of the main diagonal.

Proof. First, assume

M =

0 0 a

0 0 0

0 0 0

 .

Define x = (x1 x2 x3)
T , and let x∗Mx = ax3x1 represent elements in the numerical range. (Note: x1

represents the conjugate of x1.) For an arbitrary element k ∈ Zp[i], let x1 = 1, and x3 = a−1k, so

that x∗Mx = k. By Lemma 2.2, there exists x2 ∈ Zp[i] such that |x2|2 + |x3|2 ≡ 0 mod p, so that

|x1|2 + |x2|2 + |x3|2 = 1. Since k can be any element of Zp[i] we have W (M) = Zp[i].

If a is in one of the other five spots off of the main diagonal, there is a permutation matrix P so that

P ∗MP has a in the top-right corner. Since permutation matrices are unitary, by Lemma 2.3, we still have

W (M) = Zp[i].

Lemma 3.2. For all primes p ≡ 3 mod 4, W (M) = Zp[i] where M ∈ M3(Zp[i]) is given by

M =

0 a 0

0 0 c

0 0 0


where a, c ̸= 0, or any other 3 × 3 matrix with exactly two non-zero entries, either both above the main

diagonal, or both below the main diagonal.

Proof. First assume

M =

0 a 0

0 0 c

0 0 0

 .

Consider x∗Mx = ax2x1+ cx3x2. We will again consider a subset of the numerical range by stipulating that

x2 = 1.
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First, we show that there is a non-zero element in this set. Letting x3 = c−1, we have that |x1|2 ≡ −|c−1|2.
By Lemma 2.1, there exists A,B ∈ Zp such that A2 + B2 ≡ −|c−1|2, so we will let x1 = A + Bi. Then

x∗Mx = a(A−Bi) + 1. This is only 0 if −a−1 = (A−Bi), in which case we can instead begin by choosing

x3 = −c−1, and use the same choice for x1.

Now, let ax1 + cx3 be a fixed non-zero quantity with the constraint that |x1|2 + |x3|2 ≡ 0. Let us

now consider kx1 and kx3 where k is an arbitrary element of Zp[i]. Note that |kx1|2 + |kx3|2 = |k|2|x1|2 +
|k|2|x3|2 = |k|2(|x1|2 + |x3|2) = |k|2(0) = 0, which satisfies the constraint. Then, the output becomes

akx1+kcx3 = k(ax1+ cx3). Since ax1+ cx3 is fixed and k varies over all of Zp[i], we have that k(ax1+ cx3)

maps to every element of Zp[i], since k → a−1k is an automorphism of Zp[i] (where a
−1 = ax1+cx3 ∈ Zp[i]

∗).

Therefore, W (M) = Zp[i].

Now, if M has its two non-zero elements in other entries off of the main diagonal, the roles of x1, x2, x3

can be adjusted accordingly to achieve the same result. For example, if M =

0 a c

0 0 0

0 0 0

, let x1 = 1 and

apply the same argument to ax2 + cx3. Similarly, if M =

0 0 a

0 0 c

0 0 0

, let x3 = 1 and apply the argument

to ax1 + cx2. If M is instead strictly lower triangular, then conjugation by the standard exchange matrix

(which is unitary) will change it to a strictly upper triangular matrix, while preserving the numerical range,

so that the prior results may be applied.

In [2], Lemmas 3.1 and 3.2 are considered only as 3 × 3 without considering higher dimensions, and in

[6] little variance is given to where the entries appear and with what values, although higher dimensions are

considered. However by using submatrices, these results extend to matrices of arbitrary size.

Lemma 3.3. Suppose Mi is a principal submatrix of M created by deleting the ith row and ith column

of M . Then W (Mi) ⊆ W (M).

Proof. If x′ is generated from x ∈ Zp[i]
n−1

by inserting a 0 in position i, then ∥x′∥ = ∥x∥ and ⟨x′,Mx′⟩ =
⟨x,Mix⟩.

Theorem 3.4. Suppose M ̸= 0 is an n × n triangular matrix with elements in Zp[i]and n ≥ 3, and a

constant diagonal. Suppose also that at least one element above the main diagonal (if M is upper triangular)

or below the main diagonal (if M is lower triangular) is 0. Then W (M) = Zp[i].

Proof. If M is strictly lower triangular, it is unitarily equivalent by a permutation matrix (the standard

exchange matrix) to a strictly upper triangular matrix, so we will assume M is strictly upper triangular

without loss of generality.

We will proceed by induction on n. For the base case (n = 3), the statement is a direct corollary of

Lemmas 3.1 and 3.2.

Suppose n ≥ 4, and assume for any strictly upper triangular, non-zero (n− 1)× (n− 1) matrix with at

least one 0 above the main diagonal and all entries in Zp[i], the numerical range is Zp[i].

If the constant diagonal is not 0, then we may use Lemma 2.4 and achieve the same result.

For an n × n matrix M with the same hypotheses, consider the principal submatrix Mi by deleting a

row and corresponding column which does not remove all of the zeroes above the diagonal. If Mi is the zero
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matrix, since n ≥ 4, there are other rows and corresponding columns that can be instead deleted so that

Mi is not 0, while keeping at least one 0 above the diagonal. Once Mi is correctly chosen, by our inductive

hypothesis, W (Mi) = Zp[i]. Then by Lemma 3.3, Zp[i] = W (Mi) ⊆ W (M), so W (M) = Zp[i].

There is a clear third case missing: what if all three entries above the diagonal in a 3 × 3 matrix are

non-zero? Unfortunately, this problem has proved particularly vexing. Testing indicates that all strictly

triangular matrices M have W (M) = Zp[i], but we are unable to resolve the last piece of the puzzle. In the

next section, we will achieve some results in this situation for 4× 4 matrices and higher.

It is also worth noting that we are considering strictly triangular matrices for another reason beyond

simplicity of calculations. In, [3, Example 4.1] a block-reduced upper triangular 3× 3 matrix is shown with

W (M) ̸= Zp[i].However, while maintaining some 0 entries above the diagonal, we are able to allow some

more variance along the diagonal. This next result can be conjugated by permutations to give results for

other similar 3× 3 matrices, but this specific form will be useful in the next section, so we leave it as is.

Conjecture 3.5 Suppose M is a 3× 3 matrix of the form

M =

a b 0

0 a 0

0 0 0


with all elements in Zp[i], b ̸= 0. Then W (M) = Zp[i].

Though we have not completed a proof for this conjecture, we believe such a proof would be possible.

As we will show in the next section, the consequences of this conjecture could expand our results to new

dimensions.

4. No 0 Entries Above the Diagonal. Here we are able to make progress on some strictly triangular

4 × 4 matrices with no 0 entries above the diagonal, and then generalize to higher dimensions. The work

depends on results about 2× 2 matrices.

Theorem 4.1. Suppose

M =


0 a b c

0 0 d e

0 0 0 f

0 0 0 0


with a, b, c, d, e, f ̸= 0 belonging to Zp[i]. Suppose further that the 2× 2 matrix

T =

(
−a−1bd (f − a−1be)

−a−1cd −a−1ce

)
is such that any element of Zp[i]can be represented as y∗Ty where y ∈ Zp[i]

2
. Then W (M) = Zp[i].

Proof. Keep in mind that if x = (x1 x2 x3 x4)
T is a vector with entries in Zp[i], then a typical numerical

range element looks like:

x∗Mx = x1(ax2 + bx3 + cx4) + x2(dx3 + ex4) + fx3x4.

Since a ̸= 0, it is invertible, we can let x2 = −a−1(bx3 + cx4). Then, the expression becomes
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x1(ax2 + bx3 + cx4) + x2(dx3 + ex4) + fx3x4 =(4.1)

0− a−1(bx3 + cx4)(dx3 + ex4) + fx3x4 =(4.2)

−a−1bd|x3|2 − a−1ce|x4|2 + (f − a−1be)x3x4 − a−1cdx4x3.(4.3)

And this final expression represents y∗Ty if y = (x3 x4)
T and

T =

(
−a−1bd (f − a−1be)

−a−1cd −a−1ce

)
.

Note that while we are assuming x2 has a specific form, we have made no assumptions about x1, x3, x4.

We can let x3, x4 be any values in Zp[i], and by Lemma 2.2, x1 can always be chosen so that |x1|2 + |x2|2 +
|x3|2 + |x4|2 = 1. Since we assume that y∗Ty can represent any element of Zp[i] when x3 and x4 can be

freely chosen, we are done.

The assumption of representation in the Theorem 4.1 is equivalent to requiring that the 2× 2 matrix T

satisfies
⋃

k∈Zp
Wk(T ) = Zp[i]. Prior work in [6] and [3] help answer this question.

Lemma 4.2 ([6, Lemma 10]). Let A ∈ Mn(Zp[i]) and let B be the block matrix

(
A 0

0 0

)
. Then

W (B) =
⋃

k∈Zp
Wk(A).

In [3]; 2× 2 numerical ranges are largely reduced to a few specific cases; we will consider those as parts

of 3× 3 block matrices in the following proof.

Proposition 4.3 (Corollary of Conjecture 3.5). Suppose M ∈ M2(Zp[i]) has a single (repeated) eigen-

value in Zp[i], with corresponding eigenvectors v ∈ Zp[i]
2
satisfying ∥v∥2 ̸= 0, and M is irreducible. Then⋃

k∈Zp
Wk(M) = Zp[i].

Proof. By Lemma 4.2, we need only show that for any such M , W (B) = Zp[i] where B =

(
M 0

0 0

)
. By

[3, Theorem 1.2], M is unitarily equivalent to an upper triangular matrix; since it has a single eigenvalue,

we can write M =

(
a b

0 a

)
. By Conjecture 3.5 and Lemma 4.2, W (B) =

⋃
k∈Zp

Wk(M) = Zp[i].

Putting these together, we can see a clearer form of Theorem 4.1.

Proposition 4.4 (Corollary of Conjecture 3.5). Suppose

M =


0 a b c

0 0 d e

0 0 0 f

0 0 0 0


with a, b, c, d, e, f ̸= 0 belonging to Zp[i]. Suppose further that the 2× 2 matrix

T =

(
−a−1bd (f − a−1be)

−a−1cd −a−1ce

)
has a single (repeated) eigenvalue in Zp[i], with all eigenvectors v satisfying ∥v∥2 ̸= 0, and T is irreducible.
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Then W (M) = Zp[i].

Proof. The proof follows immediately from Theorem 4.1 and Proposition 4.3.

Corollary 4.5. Suppose M is an n× n matrix, n ≥ 4, with a constant diagonal and all entries above

the diagonal constant (possibly different from the diagonal). Then W (M) = Zp[i].

Proof. If n ≥ 4, consider a 4× 4 submatrix M ′ of M . By Lemma 2.4, we need only consider

M ′ =


0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

.

The corresponding 2×2 matrix in Proposition 4.4 is T =

(
−1 0

−1 −1

)
. This matrix has a single, repeated

eigenvalue in Zp[i], with eigenvector v = (0 1)T satisfying ∥v∥2 ̸= 0, so the result follows from Proposition

4.4.

Of course, having results for 4× 4 then generalizes to higher dimensions.

Corollary 4.6. Suppose that M ∈ Mn(Zp[i]), n ≥ 5, has a principal submatrix that satisfies the con-

ditions of Proposition 4.4. Then W (M) = Zp[i].

Proof. This follows directly from Theorem 4.1 and Proposition 4.3.

Unfortunately, though Theorem 4.1 and Proposition 4.3 are sufficient to prove Corollary 4.6, they are

not necessary. The matrix

M =


0 1 4 + 2i 4 + 4i

0 0 1 + 6i 1 + 6i

0 0 0 2

0 0 0 0


over Z7[i] has a full numerical range, but the corresponding 2× 2 matrix

T =

(
5 + 6i 6i

i i

)
does not have

⋃
k∈Z7

Wk(T ) = Z7[i]. By Lemma 4.2, this can be seen by viewing W (B) where

B =

5 + 6i 6i 0

i i 0

0 0 0

.

That image is shown in Figure 4.1. It is noteworthy that the eigenvalues of T , 1
2 ((5+ 7i)±

√
−24 + 50i), do

not belong to Z7[i].
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Figure 4.1. W (M) = Z7[i], but
⋃

k∈Z7
Wk(T ) ̸= Z7[i].

5. Future Work. Our biggest concern is finishing the case of 3 × 3 strictly triangular matrices. We

feel fairly confident in the following conjecture.

Conjecture. If M ∈ Mn(Zp[i]), n ≥ 3 is strictly triangular, then W (M) = Zp[i].

More broadly, we believe, based on our preliminary explorations, that the numerical range of all 3 × 3

matrices over Zp[i] can be classified into one of a few finite categories. Much work still needs done to identify

the criteria for determining the size of the numerical range of a given matrix, but examples of each of these

numerical range shapes may be found in Appendix A.

Conjecture. If M ∈ M3(Zp[i]), then W (M) contains either 1 element, p elements, p2 − 1 elements,

p2 − (p− 1) elements, or p2 elements.

Beyond that, in [3, Propositon 3.4], a variation of Schur’s Theorem for 2 × 2 matrices over Zp[i] is

established. If that generalizes to higher dimensions, then we have the following conjecture.

Conjecture. If M ∈ Mn(Zp[i]), n ≥ 3 has a single eigenvalue, belonging to Zp[i], with all eigenvectors

v satisfying ∥v∥2 ̸= 0, then W (M) = Zp[i].
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Jordan Crawford, Edoardo Ballico, and Patrick X. Rault for their input.

REFERENCES

[1] Ballico, E. (2018). “The Hermitian Null-range of a Matrix over a Finite Field”, Electronic Journal of Linear Algebra,

Volume 34, pp.205-216. DOI:https://doi.org/10.13001/1081-3810,1537-9582.3416

[2] Ballico, E. (2019). Numerical range over finite fields: Restriction to subspaces, Linear Algebra and its Applications, Volume

571, pp. 1-13.

[3] Coons, J.I., Jenkins, J., Knowles, D., Luke, R.A., Rault, P.X. (2016). Numerical Ranges Over Finite Fields. Elsevier:

Linear Algebra and its Applications, 501.

Retrieved From https://www.sciencedirect.com/science/article/pii/S0024379516300106

7



[4] Gallier, J. (2011). Geometric Methods and Applications For Computer Science and Engineering. New York, NY. Springer

Science+ Business Media.
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Appendices

A. Examples of various sizes of numerical ranges.

A.1. W (M) = Zp[i]. As established, we have reason to believe that strictly triangular matrices in Zp[i]

have W (M) = Zp[i]. However, we can see by these examples that such matrices are not the only matrices

to satisfy this.

Consider the following examples of matrices M ∈ Z7[i] which satisfy W (M) = Zp[i].

Figure A.1. The numerical range of M when W (M) = Z7[i]

As in Figure A.1, each of the following matrices M ∈ Z7[i] satisfies W (M) = Zp[i].

M =

1 + 4i 5i 4 + 5i

1 + 2i 2i 6 + 2i

2 + i 3 + 5i 1 + 6i

• M =

 1 + i 2 + 6i 6 + i

2 + 3i 5 + 6i 3 + 3i

5 + i 4 i

•

M =

4 + 6i 3 1 + 2i

2 + i 4 + 6i 1 + 3i

2 + 4i 2 + 4i 4i

• M =

4 + 6i 1 + 3i 4 + 2i

4 + 5i 5 + 4i 0

3 6 + i 3 + 6i

•

M =

1 1 1

0 0 1

1 1 0

• M =

1 1 1

1 0 1

1 0 1

•
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Figure A.2. The numerical range of M when W (M) = Z3[i]

Below, we also have a selection of examples of M ∈ Z3[i] which satisfy W (M) = Z3[i], as in Figure A.2

M =

1 1 1

1 0 1

1 0 1

• M =

1 + i 2 2i

1 0 1

1 0 1 + i

•

M =

1 + i 2 2i

1 i i

2 2i 1 + i

• M =

1 i 1

i 1 i

1 i 1

•

A.2. |W (M)| = p2 − 1. We have no current conjecture regarding how to classify these matrices, but

in our exploration we identified several instances of where W (M) contains all but one element of Zp[i]. A

selection of examples are given below.

Example. M ∈ Z7[i],M =

 0 6 + 5i 3i

4 + 3i 0 6 + 5i

2 + 5i 4 + 3i 0

 with W (M) as shown in Figure A.3.

Figure A.3. W (M) with M =

 0 6 + 5i 3i

4 + 3i 0 6 + 5i

2 + 5i 4 + 3i 0

 over Z7[i]
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Example. M ∈ Z7[i],M =

 4 + i 5 + 3i 5i

2 + 3i 1 + 4i 4i

1 + i 4i 4 + 3i

 with W (M) as shown in Figure A.4.

Figure A.4. W (M) with M =

 4 + i 5 + 3i 5i

2 + 3i 1 + 4i 4i

1 + i 4i 4 + 3i

 over Z7[i]

Example. M ∈ Z3[i],M =

2 + 2i 2i 2i

1 + 2i 0 2 + 2i

1 2 1 + 2i

 with W (M) as shown in Figure A.5.

Figure A.5. W (M) with M =

2 + 2i 2i 2i

1 + 2i 0 2 + 2i

1 2 1 + 2i

 over Z3[i]

Example. M ∈ Z3[i],M =

 1 2 + i i

2 0 1 + i

2 + 2i i 0

 with W (M) as shown in Figure A.6.
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Figure A.6. W (M) with M =

 1 2 + i i

2 0 1 + i

2 + 2i i 0

 over Z3[i]

A.3. |W (M)| = p2− (p−1). We also provide here a selection of examples where W (M) is missing p−1

elements of Zp[i]. Intuitively, this means that there is nearly a ”line” missing.

Example. M ∈ Z7[i],M =

0 3 5

6 0 3

4 6 0

 with W (M) as shown in Figure A.7. You can see that all

elements 6 + bi, b ̸= 0 are excluded from the numerical range.

Figure A.7. W (M) with M =

0 3 5

6 0 3

4 6 0

 over Z7[i]

Example. M ∈ Z3[i],M =

 0 2 + 3i 1 + 5i

4 + 6i 0 2 + 3i

5 + 4i 4 + 6i 0

 with W (M) as shown in Figure A.8. This matrix

is the same as the previous matrix, scaled by a factor of 3+ i. Transformations like this rotate the numerical

range according to the factor it was scaled by. In Figure A.8, the ”missing line” is still visible, identifiable

with a ”slope” of 4.
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Figure A.8. W (M) with M =

 0 2 + 3i 1 + 5i

4 + 6i 0 2 + 3i

5 + 4i 4 + 6i 0

 over Z7[i]

Example. M ∈ Z3[i],M =

 1 + i 2 i

2 + 2i 2i 0

i 2 + i 2

 with W (M) as shown in Figure A.9. We see that the

elements 1 + 2i and 2 + i are not included in the numerical range.

Figure A.9. W (M) with M =

 1 + i 2 i

2 + 2i 2i 0

i 2 + i 2

 over Z3[i]

A.4. |W (M)| = p. Matrices which are equal to their own conjugate transpose have a numerical range

of Zp. Multiples of such matrices have numerical ranges with p elements, rotated off of the Zp line according

the the factor the matrix was scaled by.

Example. M ∈ Z7[i],M =

 0 5i 3i

2i 0 5i

4i 2i 0

 with W (M) as shown in Figure A.10.
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Figure A.10. W (M) with M =

 0 5i 3i

2i 0 5i

4i 2i 0

 over Z7[i]

Example. M ∈ Z7[i],M =

 0 2 + 5i 4 + 3i

5 + 2i 0 2 + 5i

3 + 4i 5 + 2i 0

 with W (M) as shown in Figure A.11. This

matrix is the previous example, scaled by a factor of 1 + i.

Figure A.11. W (M) with M =

 0 2 + 5i 4 + 3i

5 + 2i 0 2 + 5i

3 + 4i 5 + 2i 0

 over Z7[i]

A.5. |W (M)| = 1. The zero matrix (or a shifted zero matrix) has only 1 element in its numerical range.

Example. M ∈ Z3[i],M =

0 0 0

0 0 0

0 0 0

 with W (M) as shown in Figure A.12.
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Figure A.12. W (M) with M =

0 0 0

0 0 0

0 0 0

 over Z3[i]

B. Mathematica code to replicate results. In our research, we relied heavily on computation

to explore and verify results. We include key aspects of our Mathematica code here for the purposes of

replication. Great thanks to Amish Mishra for writing the original version of the code, which we have

adapted to be what is included here.

B.1. Preliminaries. Several functions and variables must be defined in order to calculate and plot the

numerical range of a matrix over a finite field. Since the built-in functions do not account for finite fields,

we must build our own.

p = 3; (* Change for different size finite field *)

plotNumericalRange[numRange_] := (

plotPoints = {};

Do[

AppendTo[

plotPoints, {Re[numRange[[each]][[1]][[1]]],

Im[numRange[[each]][[1]][[1]]]}];

, {each, 1, Length[numRange]}];

ListPlot[plotPoints,

PlotStyle -> Directive[Purple, PointSize[.02]],

AxesLabel -> {Re, Im}]

)

zpi = {};

Do[

Do [

AppendTo[zpi, a + b*I];

, {b, 0, p - 1}];

, {a, 0, p - 1}];

ZpiArray3x3[p_, n_] := (
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Module[{Z1, num, Zpi},

Z1 = ConstantArray[0, {p, p, p}]; (* TODO: make this dynamic,

maybe with another ConstantArray? *)

Do[

Clear[num];

Do[

num = a + b*I;

Z1[[a + 1, b + 1]] = num;

, {b, 0, p - 1}]

, {a, 0 , p - 1}];

Zpi = Tuples[Flatten[Z1], {n}];

Zpi

]

)

numericalRange3x3[k_, M_, p_, n_] := (

Module[{numRange, Zpi},

numRange = {};

Zpi = ZpiArray3x3[p, n];

Do[

x = Zpi[[idx]];

norm = Mod[x.{x}\[ConjugateTranspose], p][[1]];

If[norm == k,

numRangeElem =

Mod[Transpose[{x}]\[ConjugateTranspose].M.Transpose[{x}], p];

If[! MemberQ[numRange, numRangeElem],

AppendTo[numRange, numRangeElem]

]

];

, {idx, 1, Length[Zpi]}];

(* This portion makes all terms of the numerical range the \

positive modulo p. *)

Do[

If[Re[numRange[[idx]]][[1]][[1]] < 0,

numRange[[idx]][[1]][[1]] = numRange[[idx]][[1]][[1]] + p;

];

If[Im[numRange[[idx]]][[1]][[1]] < 0,

numRange[[idx]][[1]][[1]] = numRange[[idx]][[1]][[1]] + p*I;

];

, {idx, 1, Length[numRange]}];

nr = {};

Do[

If[! MemberQ[nr, numRange[[i]]],

AppendTo[nr, numRange[[i]]];

];

, {i, 1, Length[numRange]}];
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nr]

)

B.2. Plotting a numerical range. Once we have our functions defined, we can utilize them to

calculate and plot a numerical range.

(* Change M to a 3x3 matrix here. To get an imaginary symbol, type esc i i esc *)

M = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

Print["M: ", MatrixForm[M]];

plotNumericalRange[numericalRange3x3[0, M, p, 3]]
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