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Paul J. Zwier
Knuth’s (1,2,1) Unstacking

This presentation is dedicated to Donald Knuth who has proposed many interesting
and challenging problems in the Problems Section of The American Mathematical Monthly.
The problem considered is that proposed by Barry Hayes, Knuth, and Carlos Subi (E3267
(1988,456]). The published solution, due to Albert Nijenhuis, just recently appeared in
the March 1993 Monthly, pages 292-294.

The problem is as follows. Suppose that we are given n piles of blocks; the i—th pile
having a; blocks, ¢ = 1,2,...,n. Dismantle the piles by choosing a pile having 2 or more
blocks, removing 2 blocks and putting one block on the pile on the left and one block on
the pile on the right. Continue the process until there are no more piles having more than
one block. What is the final configuration like and how many moves are required?

My solution differs from that of Nijenhuis in that it pays closer attention to the
evolution of the piles as the dismantling progresses. I also generalize to the (s,2s,3)
unstacking, where s > 1.
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Problem E32867

Given a sequence (z1,Z2,...,%;) of nonnegative integers in which z4x > 1 for some k,
let us say that a “k-move” is the operation of replacing the subsequence (zi—1, Tk, Tk41)
by (ZTk—1# 1,Zk = 2,Zg41 + 1).

(a) Prove that repeated application of such moves to the sequence (0™,2m, 0™) always
leads to the sequence (1™,0,1™) after exactly 3(m + 1)(m + 3)m moves. Here 0™
and 1™ stand for sequences of m 0’s and m 1’s, respectively.

(b) Prove that, for sufficiently large m, the starting sequence (0™, a;,az,...,an, 0™) leads
inexorably to the sequence (0™+?,19,0,17,0™+"—P—9-7=1) for some p,q, and r, if
a1,a2,...,an are positive integers. Furthermore, p, ¢, and r can be expressed in terms
of 3 7—1J and 3°7_, ja;.How many moves does this transformation require?

Solution: -
- For a given sequence x = (zj,z3,...,%) of nonnegative integers, define K(x) =
Y j=12j, and L(x) = Y., jz;, and finally M(x) = Y +_,j%z;. For the fixed a =
(a1,@2,...,an), we shall use the letters G, H,J to denote K(a), L(a), and M(a) respec-
tively. Agree that 1° means the empty word, 0.

In order to get insight into the problem, consider the following more easily described
“task”. Supposed that we are given n piles of blocks having a;,a.,...,a, blocks respec-
tively. Suppose that we dismantle these piles by using elementary moves described as
follows: if a given pile has more than one block in it, remove a block and place it on
the pile(possibly empty) immediately on its right. Put more formally, given a sequence
(z1,%32,...,21) and a number 0 < k < [, a right k-move is the operation of replacing the .
pair (zk,Zr+41) by (zk — 1, Zk41 + 1). Intuitively, we can easily imagine what will happen
if we repeatedly perform right k-moves on the n piles represented by a. We inexorably
arrive at a sequence of G piles each consisting of exactly one block.

To probe a little further, suppose that we regularize the dismantling process by doing
a scanning process from the right which consists of performing several right k-moves in
succession. If the piles are in some state, scan the piles from the right until we reach a
pile having more than one block. Perform a right k-move and then proceed to the right
to the next pile and perform another right k-move, if possible, until one reaches an empty
pile. As the process proceeds, we form “stepping stones” of one block each over which
we transfer single blocks to the end of the line. Put more mathematically, if x = wb1®,
where w is a word of integers and b > 1, then scan(x) = w(b — 1)1=*+!. Notice that
scan®(x) = w1**+%, We continue the process by operating on a shorter word than w. If
we let xo = (a1,4a3,...,a,0%"") to represent the original piles, then x; = (1) represents
the terminal state. .

It is also easy to calulate the number of moves required because of the following facts.
If x is a sequence of integers and f} is a right k-move then

K(fx(x)) = K(x)
L(fr(x)) = L(x) + 1.
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Thus, to calculate the number of right k-moves necessary we merely calculate L(x;) —
Lixo) = X%, i — H = G(G +1)/2 — H. We could also dismantle the piles by left k-

moves, but then xo = (06~ ",a1,a2,...,8,) 2nd X3 = (1€), while the number of moves is

the same.

For the problem posed, the situation is more interesting. Again we can consider the
task of dismantling the given piles, but the k-moves are symmetric this time. Also, notice
that if x = (z1,Z2,---,%) and fi is a k-move, then

K(fx(x)) = K(x)

| L(fulx)) = L(x)
M(fi(x) = Mx) +2.

The first step in the solution of the problem is to choose the number, m, of blank piles
to put on each side of the given piles. Let us be conservative at the beginning and choose

m = G. The tuple describing the initial state is thus
xo = (0%,a1,a2,..-,8n, 0%).
The nota%bn X — y means that y is obtained from x by some successive k-moves. Let

x; = (0™+?,19,0,17,0™*"—P=9-r"1)

e

where p, q’,r are yet to be chosen. We show that, if xo — x; then p,q,r are unique.

Lemma 1: If x = (0*,1%,0,1",0%) and y = (02, 192,0,17,0%) are each obtained from

Xo by a sequence of k-moves, then x =Y.
Proof: We know that

@1+ri=g+r2=G
si+qu+ri+ti=s2+qg+ra+t2=2G+n.

Now L(x) = L(y). So

a1 +q1 a+q+ri+1 83+qa az2+qa2+ra+1
TEED DU I DI D DR
j=a+1 J=a+q+2 J=s2+1 J=a3+q2+2

But then

—(s14q41) = (252 + g2+ r2+2)(g2 +72+1)
2

— (s2+ g2 +1).

(2s1+q1+r1+2)(qn+ri+1)
5
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Some straight-forward algebraic manipulations and the fact that ¢; +r; = gz +r2 =G
yields

(31 - Sz)G =4q1— q2.

Since 0 < ¢q1,¢2 < G; we find that —G < (s; — s2) < G or —1 < 51 — 52 < 1. In case,
s1 = s2, we find that ¢y = ¢2 So, ry =r; and ¢; = ¢; and thus x =y.

Ifs; —s2 =1, then ¢1 — ¢2 = G and thus ¢; = G while ¢, = 0 and hence r; = 0 and
r2=G. Also t3 —¢t; = 1. Thus

x = (0",1%,0,0,0") = (0*,1%,04 %) = (0%,0,0,1%,0%) = y.

The net result of the lemma is that we have reduced the problem to finding some
regular ways to dismantle a sequence of piles of blocks. There are three such processes
which come readily to mind. Let x be the vector representing the state of the piles at a
given time. ’

Full Scanning

For i=1 to 2G+n

If z; < 2 then next i

Else do an i-move

Next i

Call the result scan(x). -

Right Scanning

Move from right to left until we find an k& such that z; > 1.
Now do a scan as described above but starting at k.
Call the next result Rscan(x).

Left Scanning

The process is the same as left scanning only we proceed from the left to the first
k such that z; > 1, but then we scan left from k. Call the next result Lscan(x).
We shall use right scanning in our argumentation.
There are four kinds of states x which will be of interest. Let a,b,c,d be positive
integers with d > 1 and let w be a word of nonnegative integers.
Type A Here x = (w, u,d,0%).
Type B Here x = (w, u,d,1%,0%). x, is of type A or B.
Type C Here x = (w, u,d,0,1¢,0°).
Type D Here x = (w,u,d,1%,0,1¢,0%).

Notice the following important -changes that take place as we begin with xo and
repeatedly perform right scans.

If x is of type A, then Rscan(x) = (w,u + 1,d — 2,1,0%~!) Notice that the result
decreasesd by 2and aby 1. fd =3 ord = 2 and v = 0 and w = 0° for some e we are
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finished. If d = 3 or d = 2 and « > 0, then Rscan(x) is of type B or C with a shorter word
wy than w.If d > 3 then Rscan(x) is of type B. A

If x is of type B, then Rscan(x) = (w,u+1,d—1,1°=1,0,1,0°"!) and we accomplish
this in b+ 1 k-moves.In physical terms, this means that if we start with some piles of blocks
having a string of  single blocks preceeded by a pile of more than 1 block, by performing a
sequence of k-moves to the right, we use the b “stepping stones” to transfer a single block
to the end of the piles always leaving an empty pile immediately behind us and having
a pile of two blocks on the pile immediately before us until we get to the end of the line
where we put down the last block in a newly—created space but we leave an empty space
immediately preceeding. The net result is that nothing is accomplished in the dismantling
process, but a new space is created for a new block a some later stage. Notice that if «u =0
and d = 2 we are done. Otherwise, Rscan(x) is of type D.

If x is of type C, then Rscan(x) = (w,u+1,d—2,1°*!). If d = 2 or d = 3, Rscan(x)
is of type C or B respectively but with a shorter word w, involved. Of course, this is done
in 1 k-move. ‘

If x is of type D, then Rscan(x) = (w,u + 1,d —1,1%-1,0,1°*,0¢), again in b + 1
moves. Again, in physical terms, we can use the b stepping stones in our transfer of the
single block but we cannot get to the end this time but merely place the block in the empty
space before us, leaving an empty pile behind us. Notice that if d = 2, Rscan(x) is of type
D. Also, if d > 2 and b = 1, Rscan(x) is of type C. Otherwise Rscan(x) is of type D is of
type D but with smaller b.

There is a nice way to see what is happening as we continue to do successive right scans.
Associate with each state x of type A the lattice point (0,0), of type B the lattice point
(6,0), of type C the point (0,c) and, finally, of type D the point (c,d). Now Xg is of type
B or C and thus is a point on the x-axis. As we successively scan a state associated with a

point on the x-axis we proceed to lattice points on the line z + y = b which are associated

with states of type D. When we reach the point (0,5) which is of type C we proceed in
one k-move to the point (0,b+ 1). At each stage we deplete the ‘d-pile’ by 1 except in
our passage from type C to B where we depete the ‘d-pile’ by 2. Notice that if we reach
the stage where d = 2 and if z = (w,4,2,0,1¢,0%) ,then Rscan(x) = (wyu + 1,1¢%1,09)
and we begin right scanning 2 word of shorter length. Otherwise we reach a state where
d =1 and thus if x = (w,v,2,1%,0,1%,0%), Rscan(x) = (w,u + 1,1°+1,0,1¢, 0%) which is
associated with the lattice point (¢ + 1,4), thus moving horizontally one unit. Again, we
begin scanning a state where the word w is of shorter length. The net result is a “Cantor-
like walk” through the lattice until the word w is of the form 0¥ for some v. Since the
function K is preserved under k-moves we must reach a point (g,r) in the lattice such that
¢ +r = G and, of course, the point (g,r) is in the first quadrant.

The preceeding analysis proves the following theorem.

Theorem: Let xo = (0%,ay,43,...,an,0€) describe the original state of the piles of blocks.

Then there is a positive integer v and nonnegative integers ¢ and r withg+r =G
and an integer-p with 0 < p < G such that

Rscan’(xo) = (0977, 19,0, 17,0C+n+p—g=r=1y,
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Similarly, there is a positive integer vy and nonneéa.tive integers ¢q; and r; with
q1 + r1 = G and an integer p; with 0 < p; < G such that

Lscan(x) = (0C+tntpi—a—ni=1 gn g o 0G-P1),

We can now use the functions, K, L, M to answer our remaining questions. The fact -
that a K and L are preserved under k-moves allows us to find the numbers ¢ and r in
terms of the number p. The requirement that the numbers ¢ and r satisfy the conditions
that 0 < ¢ < G and 0 < r < G enable us to determine what the number p is. The fact
that M is increased by 2 under a k-move enables us to calculate the number of k-moves
required to change the initial state xo to the final state x;. We merely have to calculate

L(x3) — L(xo)
3 .

Theorem: Let
Xo = (OG') Q1,82y... 1an’oc)

be the initial state and let

x; = (06-7,19,0,17,0C+n+p—9—r-1)

the final state after dismantling by k-moves. Then, ¢+ r = G and

= 2G - 2H + G(G +1) —2pG
- 2
r_215r—(::(c:+1)+2pc:
= > .

Since K is preserved under k-moves, we know that

g+r=G. (1)
Since L is preserved we also have
G+n G=pt+q  G-ptqtl+r
D Jemm= 3, i+ 3 i
1=G+1 J=G—p+1 G—p+q+2

Using the formulas for the sum of an arithmetic progression we find that

q(2G —2p+q+1)+r(2G—2p+2g+r +3)

H+G*= > (2)

Using the fact that ¢g+r = G, that ¢+3r = G+2r, and also that (g+r)% = G? = ¢>+2¢r+r?
we find that
H=—pG+r+G(G+1)/2.
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From this the two equations for ¢ and r follow.

The equations for ¢ and r contain the variable p, but the variable p is not fully
determined.To remove the indeterminacy, use the fact that assigning different values to
p gives different values for ¢ and r but these values are congruent modulo G. Thus, we
merely choose p so that the corresponding values for ¢ and r are such that 0 < ¢ < G
and 0 < r < G.Geometrically this means that the point (g,r) lies in the first quadrant.
If we call the integers a;,a2,4as,...,a, in the the initial state, the “the initial pocket”,
and if we call the sequence 17,0,1" the “terminal pocket” and if the terminal pocket were

centered over the initial pocket, then either p = [<=2+1] or that number plus 1. Thus if -

po = [E€=2*L], there is a unique integer § such that

G(G+1
q=G—H+—(2+—)—(Po+6)G
r=H—g(E2i]5-)-+(Po+6)G.

We can write down a explict formula for p by solving the following problem. If (zq, yo)
is a point on the line z + y = b where b > 0, find an integer k such that (zo — ch, yo + kb)
is on the line but 0 < zo — kb < b. If we solve for k, we find that 2 —1<b< %;thatis
k= [%2 — 1|, where |z] is the smallest integer greater than or equa.l to z. Thus

P=\l—"0"""FA

G+1 H_I
2 G’

It is an easy induction on n, the number of integers in the initial pocket, to show that
p > 0. This means that no matter how the sequence a,,az,...,a, is distributed, the final
pocket will be spread on both sides of the initial pocket.

A similar computation using the function M enables us to calculate the number N of
k-moves necessary to transform xg to x;. Now

G+n
M(xo)= Y jlaj_c= Z(s + G)%a, = J +2GH + G3.
J=G+1 s=1
Also
G—-p+q G—p+q+r+l1
Mx)= Y 2+ Y
J=G—p+1 J=G—ptq+2

Ifwelet W =G —p+1 we get

(G+W)G+W +1)(2G+2W +1) —W(W — 1)(2W — 1)

M(Xl) = 6

- (W +q)%.
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There is an interesting generalization of this problem which we now consider. The
“k-moves” that we have considered have taken two blocks from z; and have added one
block to zx—; and x4 respectively. Suppose that we take 23 blocks from z; while adding
s blocks to zx—; and zx—3 respectively, where s > 1. Such unpiling can be thought of as
(s,2s, 8) unpiling. Problem FE3267 considers (1,2,1) unpiling. We shall show that there
are nice generalizations for the results stated in (a) and (b).

The key to seeing what the proper generalizations are is to notice that an (s,2s,s)
unpiling can be thought of as a (1,2,1) unpiling where we bundle s blocks on any pile into
& single Block and think of moving single Blocks of s elements rather than s single blocks.
The complication comes from the fact that there may be ‘left-over’ such single blocks, if
8 > 1. A fruitful way to see this unpiling process to to think of the ‘left-over’ blocks as
being at the bottom of the pile and as not eligible for moving.

From now on our k—moves are centered at z; but are of the form (s,2s,3). Notice
that if fx is a k—move we have

K(fr(x)) = K(x)
L(fx(x)) = L(x)
M(fi(x)) = M(x) + s.

The generalization of (a) is easy to come by. It says that any repeated application
of k-moves to the sequence (0*¢,2st + r, 0**) always leads to the sequence (s*,r,s?) after
exactly 3(t + 1)(¢ + §)t moves.

The generalization of (b) requires a little preparation. Suppose that a;,az,...,an
are positive integers designating the number of blocks in each of n piles. For each ¢ with
1<i<n,let

a; =st; +r; where 0<r;<s.

The idea is to think of the ith pile as consisting of ¢; Blocks each consisting of s blocks and
having r; single blocks at the bottom of the pile. Now perform a (1,2,1) unpiling on the
piles having ¢;,%;,...,%, Blocks. Notice that in the itk pile we have r; single blocks which
have remained untouched in the process. From the results that we found for the (1,2,1)
process, there are two possibilities which may occur. Either they have a single Block of s
blocks on top of them or they have no such single Block on top of them. In either case the
total number of blocks remaining is less than 2s and hence the unpiling process does not

continue. :
The following statement is the generalization of (b) we are seeking.
(b) For sufficiently large m, the starting sequence (0™,a;,az,...,a,,0™) leads inex-
orably to the sequence
(0™~?,s%,0,8",0m+"=P=0=r=1) L (0™ ri.rsy..0y T, 0™)

The formulas for m,p,q, and r are the same as for the (1,2,1) case where we use
t1,%2,%3,...,t, in place of a;,as,...,a, The formula for the number of k—moves nec-
essary is the same as that obtained from starting with the 0™,¢,,¢3,...,t,,0™) vector and
using only (1,2,1) k—moves.



