
A Greater Tantalizer 

Andrew Simoson 
King College 

Bristol, TN 37620 
e-mail: ajsimoso@king.edu 

The classic ~uzzle known originally as the Great Tantalizer and more recently as Instant 
Insanity consists of four cubes each of whose faces have been colored with one of four colors. 
The object is to stack the cubes so that on each stack face all four colors are displayed. 
This game can be played with the other Platonic solids. as well. In particular, we consider an 
octahedral version, consisting of six octahedra each of whose faces have been colored with one 
of six colors; the object being to stack the octahedra so that on each of the six natural stack 
fates all six colors are displayed. Whereas the color configuration in the cubic game has been 
arranged herein so that there are three solutions out of 41,472 possible arrangements, the 
color configuration in the octahedral game has been arranged so that there is but one solution 
out of 318,504,960 possible arrangements, which means that unless one has incredible luck or 
intuition or a means of focussing on the salient structure of the puzzle, solving the puzzle is 
practically impossible. A little bit of graph theory is just what is needed to transform these 
nearly intractable-by-trial-and-error combinatorial puzzles into comparatively easy puzzles. 

FlGURE 1. Cubic stack, front and rear view 

A cubic tantalizer 

WEt first consider a cubic version of the Great Tantalizer, modifying the an..alysis due to 
O'Beirne [3], which is duplicated in [1], [4], and [5]. Imagine having four cubes, each of 
whose faces have been colored solidly with R .....:. red, W = white, G = green or B = blue. 
Since this paper is rendered in shades of gray, we identify B with solid black, R with dark 
gray, G with light gray, and W with white. Note that the stack of FIGURE 1 gives a solution 
to the puzzle for the four given blocks. That . is, each of the four stack faces-the faces of the 
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stack--display all four colors. For this particular coloring of four cubes, there happens to be 
three distinct solutions. Finding these solutions (including the one shown in FIGURE 1) is a 
clever application of graph theory. We use a stereo graphic projection of the cube as depicted 
in FIGURE 2 as suggested by Richard Guy in a private communication, so that we can see 
all 6 faces of the cube at once rather than just 3 faces; note that the top face is rendered as a 
small square, the four side faces as trapezoids, and the bottom face as an unbounded region. 
The labels front, left, back, and right are taken with respect to the perspective of standing 
to the left of the cube of FIGURE 2. For ease of presentation in this paper, we shall stack 
the blocks horizontally across the page rather than vertically. 

bottom 

left 

• front top back 

Vantage Pt 

right 

FIGURE 2. Stereographic layout of the cube 

FIGURE 3 shows the color coding of the four cubes in stereographic fashion, labeled 
blocks I, II, III, . and IV. We wish to tumble these four blocks so as to achieve the solution 
as given in FIGURE 1. 
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FIGURE 3. Colorings of the four cubes 

The key to finding such solutions to the puzzle is the simple observation that if a particular 
face F of a cube C belongs to a stack face of a solution then the face opposite F on cube 
C also belongs to a stack face of that solution. To focus on this feature we construct the 
multigraph g whose vertices are the four colors R, W, G, and B, and whose edges are the · 
color pairs of opposite faces on the cubes. Since each cube has three pair of opposite faces, 
g has 12 edges, as shown in FIGURE 4. Each edge bears the label corresponding to the cube 
number associated with the color pair. For simplicity, multiple edges between vertices are 
indicated with multiple labels, rather than multiple curves. Thus, the edge between vertices 
Rand B is labeled 124, indicating that ·blocks I, II, and IV all have a pair of opposite faces, 
one of which is colored red and the other is colored blue. Note that blocks I and II each 
have a pair of opposite faces both of whlch are the same color; as a result g has two trivial 
edges, one connecting G with itself, and one connecting W with itself. 
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FIGURE 4. The multigraph g 

If we group all of t4e front and back face pairs of the cubes in. a solution stack, writing 
them in the graph theoretic format as above, the result is a subgraph of g consisting of Q's 
four vertices and four of Q's edges. Furthermore, this subgraph will be a set of disjoint cycles! 
Therefore, to find a solution to this puzzle of stacking four blocks, we content ourselves with 
finding ways of decomposing g into two subgraphsi each of which subgraph contains ~ 
the vertices and is a set of d~sjoint cycles. One of these complete sets of disjoint cycles will 
correspond to the face colors on the front and back stack faces, and the other will correspond 
to the face colors on the left and right sta.Ck faces. 

FIGURE 5. A decomposition of g 

For the multigraph of FIGURE 4 there are only two such decompositions. One decom­
position is the set of two cycles which we write as . (2431) (3142), and which we interpret 
as being the sequence of edge labels between the vertices RWQB, al? indicated in FIGURE 

5. To utilize this decomposition to stack the four blocks, let us arbitrarily assign the first 
cycle to correspond to the colorings of the left and right stack faces, and the second cycle to 
correspond to the colorings of the front and back stack faces. To build ~he solution stack, 
pick up block I; find the edge labeled 1 on the first cycle; observe that this edge connects 
R and B; .,arbitrarily choose one of these colors to :Pe on the left face and tumble block I 
app-ropriately so that these tw6 colors are on the left and right of the·block. In so d6ing, this 
subgraph has become a directed graph. In FIGURE 5, note that the first cycle is clliected 
c!ockwise, indicating that B is on the left and R is on the right of block L Before setting 
block I down, find the edge labeled 1 on the second cycle; observe that this edge connects 
W and G; arbitrarily choose one of these colors to be on the front and back, so orienting the 
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cycle, and rotate block I appropriately so that these two colors are indeed on the front .and 
back of the block. Then set block I down. In FIGURE 5, since the second cycle is directed 
counterclockwise, then G is on the front and W is on the back of block I. Now consider block 
II; from FIGURE 5 the two cycles indicate that the front and back faces should be R and B, 
respectively, and that the left and right faces should be R and W, respectively. Tumble block 
II so as to achieve this positioning of colors and set it down on block L Continue the process, 
so achieving the stereographic stack solution as given in FIGURE 6, which is equivalent to 
the solution as illustrated in FIGURE 1. 

G w B R 

B R w 

G G w R w B w w R B B G 

R w B G 

Block I Block IT Block ill Block IV 

FIGURE 6. A stereographic solution st~k 

The two other solutions for this puzzle correspond to Q's only other decomposition, which 
we write as (1)(234) (3142). The first four numbers correspond to the subgraph oftwocycles, 
one of which is the singleton cycle G whose sole edge is a trivial edge corresponding to the 
color pair G / G from block I, and the other of which is the cycl~ between the vertices RWB; 
.the second four numbers correspond to the cycle between the vertices RWGB. FIGURE 7 
illustrates this decomposition, as well as an orientation. The reader may wish to build the 
corresponding stereographic solution stack, similar to that displayed in FIGURE 6. Note 
that in a solution stack corresponding to the decomposition of FIGURE 7, block I can be 
rotated giving a (marginally) different stacking solution, the only difference being that the 
top and bottom faces of block I have switched positions. 
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FIGURE 7. A second decomposition of Q 

Finally, to count the number of distinct ways of stacking the blocks without regard to 
order, arbitrarily take block I as the cornerstone; since there are three pair of opposite faces, 
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select one of these three as being the top/bottom faces. (Note that a stack upside down is 
really the same stack.) Set block I down on one of these two faces. Each of the remaining 
blocks can be placed on the stack on any of their 6 faces, and rotated 4 ways, which means 
that the total number of ways of stacking the four blocks is 3 · 243 = 41,472 different ways. 

An octahedral tantalizer 

Now let's playthe same game with octahedral blocks. This time we use six blocks, and 
six colors. FIGURE 8(A) shows a shaded stack face for a set ofsix octahedra. If we use the 
colors R = red, W = white, B = blue, E = ebony, Y = yellow, and G = green, and if we 
think of E as being solid black, Gas being darkish gray, R as lightish gray, B as off-black 
(between E and G), andY as off-white (between Rand W), then FIGURE 8(B) and 8(c) 
give a color coding and shaded puzzle solution, respectively, for a given set of six blocks. 

a. A stack face b. Color coding c. Shaded Version 

FIGURE 8. Octahedral stacks 

Once again, it is helpful to use a stereographic projection of the octahedron. In particular, 
let's consider six blocks whose faces are colored according to the scheme of FIGURE 9. For 
example, note that block I is colored so that its top face is W, its bottom face is R, and whose 
side faces are colored G, E, W, R, Y, and B, in a clockwise circuit around the octahedron. 
Note that each block has been also rendered as a dual graph, wherein each ·face of the 
octahedron has collapsed to a vertex labeled with the face's color, with an edge between 
vertices if and only if the corresponding faces of the octahedron share an edge. Observe that 
different vertices in these dual graphs may in fact have the same vertex label. The dual 
graphs harbor readily accessible information about face adjacencies in the octahedral blocks, 
infornia.tion which will be needed later on in our analysis. 
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FIGURE 9. Color coding of the octahedra 

Next we form the multigraph gas in FIGURE 10, which has six vertices, and whose edges 
correspond to the color pairs on opposite faces of the six octahedra. 

y 

FIGURE 10. The color-pair multigraph g 

As before, we decompose g. But this time a decomposition will consist of three complete 
sets of disjoint cycles corresponding to the left-and-its-rear stack face, the front-and-its-rear 
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stack face, and the right-and-its-rear stack face. Such decompositions we call treasure maps 
to the puzzle, and each of the three complete sets of disjoint cycles of a treasure map are 
called components of the map. A component structure is a listing of the cycles of a compo­
nent without regard to edge labels. From FIGURE 10, there are four possible component 
structures: {RWBEYG), (RWBEGY}, (W){B}{RYEG} and (G){RWBEY} A branch and 
prune search through g turns up 17 treasure maps involving these component structures. 
We categorize these maps into four cases. 

Case I: Each of the three treasure map components are {RWBEYG ). Each row entry in 
TABLE 1 contains three sequences of six digits which correspond to paths through the vertex 
sequence RWBEYG. For example, the sequence 123546 corresponds to the nondirected cycle 

1 2 3 5 4 6 
R- W- B-E-Y-G-R. 

left: (RWBEYG) front: {RWBEYG) right: (RWBEYG) 
123546 452361 645132 . 
125346 453162 642531 

* 142536 425361 653142 
142536 453162 625341 
143562 425136 652341 
143562 452136 625341 
145362 452136 623541 
152346 423561 645132 

TABLE 1. Ma s of three strai ht c cles p g y 

Case II: One treasure map component is {RWBEGY} and the other two components are 
(RWBEYG}. Note that "if edge EG from g is used in a component, then so must edge YR 
which in turn mea.n.s that such a component is {RWBEGY}; so in any potential treasure map 
containing the component {RWBEGY) the other two map components must be {RWBEYG). 

left: (RWBEGY) front: (RWBE,YG) right: (RWBEYG) 
125634 413562 652341 

452361 613542 
152634 413562 625341 

415362 623541 
423561 615342 
42536} 613542 

TABLE 2. Maps of one twu;ted cycle and two stra~ght cycles 

Case III: One treasure map component is (W) (B) {RYEG) and the other two components 
are (RWBEYG}. Note that if a component contains either the cycle W or the cycle B, 
then itmust be the set of cycles (W)(B)(RYEG}, and the cycle through RYEG must be 

4 5 6 1 
R-Y-E-G-R. 

left: (W) (B) (RYEG) front: (RWBEYG) right: (RWBEYG) 
2, 3, 4561 145362 452136 

152346 645132 
452136 615342 

TABLE 3. Maps of one fragmented set of cycles and two stra~ght cycles 
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Case IV: No treasure map exists with a component of (G){RWBEY). There simply are 
not enough edges to form two other compatible components. 

6 

G 

a. The three components 

w w w 
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1 Front 2 2 Right 

G E G 
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b. The sides of block I 
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W Block! R R 

c. Setting the orientation 
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d. The sides of block II 
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FIGURE 11. Analyzing a map 

B 

5 

All but one of these 17 treasure maps are bogus. Finding the correct one is a process of 
elimination. By the f~e-adjacency information in FIGURE 9 ~which was ignored in making 
FIGURE 10, 16 maps lead to impossible constructions for our set of blocks. To illustrate, 
consider the first treasure map of Case L 
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1 2 3 5 4 6 
left: R- W- B - E - Y - G - R 

4 5 3 6 1 
front: R - W - B 2 E - Y - G - R 

6 4 5 1 3 2 
center: R- W - B - E - Y - G- R 

We have arbitrarily chosen the first cycle to correspond to the left..:and-its-.rear stack faces, 
the second cycle to correspond to the front-and-its-rear stack faces, and the third cycle 
to correspond to the right-and-its-rear stack faces. Note that FIGURE 11(A) displays the 
graphs of these three cycles. Let's set the first block down and so transform these cycles 
mto directed ones. To do so take the dual graph of block I as found in FIGURE 9, which 
we reproduce in FIGURE ll(B). FIGURE ' 11(A) tells us that the opposite face color pairs 
being used on block I are R/W on the left, R/G on the fron,t, and E/Y on the right. From 
the dual graph remove the two vertices corresponding to the one color pair not being used, 
namely W/B, which reduces the dual graph to the cycle RWEGRY as shown ill FIGURE 
ll(B); this sequence of colors isthe one we should see as we walk around our block after it is 
set down. Note that if we arbitrarily. choose the face labeled R (rather than G) as the front 
face, then W must be the color of the face on the left and Y must be the color of the face 
on the right by FIGURE ll(B). Such a relationship sets the orientation of the three cycles 
as shown in FIGURE ll(c), and we set block I down accordingly, so that Rison the front 
face, W is on the left face and Y is on the right. From the dual of block II remove the two 
v~rtices corresponding to the one color pair which is not utilized, namely W/W; the result 
is the cycle RBEGWB; with respect to the orientation as set by FIGURE 11 (c), three of the 
vertices have been labeled left, front and right as shown in FIGURE 11 (D); but the vertices 
labeled front and right are nonadjacent vertices, which means that this map is bogus . . 

The only . treasure map to pass the test as delineated above is the one marked with an 
asterisk in TABLE 1. Following this map gives the directed set of three graphs of FIGURE 12, 
and following the directions of this set of three cycles gives a solution. 

w w w 

y y y 

FIGURE 12. The solution orientation 

In particular, set block I down so that its front face is G, its left is R, and its right is E. 
Then set block II down so that W is its front, B is its left, and G is its right. Continue, 
so constructing the solution of FIGURE 13. For simplicity the labels of the top and. bottom 
faces have been suppressed. It should be observed that just· because a treasure.· map passes 
this last test, it is still possible that such a map is bogus; in otuer for tlie solution stack to 
exist, the blocks must separate into two equivalence classes each containing three blocks, for 
in any stack face, three of the block faces of that stack must rest on one of their edges, and 
three must rest on one of their vertices, as can be seen from FIGURE 8. Fortunately, the 
asterisked treasure map passes this ultimate test. 
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Lastly, to compute the number of ways of stacking these 6 octahedra without regard 
to order, recall that in any stack the blocks are partitioned naturally into two equivalence 
classes of three members each. So arbitrarily select block I as the cornerstone, and select 
two of the remaining five blocks to join block I so as to form an equivalence class; there are 
10 ways of doing this. Since each block has 4 pair of opposite face colors, select one of these 
to be the top and bottom face for block I; set block I down on one of these two faces. Each 
successive block can be set down on any of its 8 faces and rotated in any of 3 ways. Therefore 
the number of ways of stacking an octahedral tower of 6 blocks is 10 · 4 · 245 = 318, 504, 960. 

Block III Block I 

FIGURE 13. The solution 

Final remarks 

Great tantalizer puzzles can also be formed using tetrahedra, dodecahedra, or icosa­
hedra, as detailed in [2]. It should be pointed out that puzzles of n-octahedra involving 
n colors can be solved in the way presented herein. The original puzzle as studied by 
O'Beirne actually involved 5 cubes with 5 different flags (rather than colors). For our oc­
tahedral tantalizer, n was chosen as 6 because there are 6 stack faces in a tower of oc­
tahedra and because 6 colors are enough to color the eight faces of each block with suf­
ficient variety. Readers interested in obtaining colored, plastic . sets of six octahedra can 
e-mail ~drews@jebasingh.com. An applet to stack six octahedra in stereographic· form is 
at http:/ jwww.king.edu/faculty/asimoson/Motion.htm. Finally, when invited to speak to 
mathematics clubs, student groups or any group interested in general problem solving, and 
when looking for a topic which is both readily understood and dramatically portrays the 
problem-solving power of mathematics, this puzzle of the Great Tantalizer is a dandy. 
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