THE FIVE ORDERS OF IGNORANCE:
KNOWLEDGE, IGNORANCE, AND THE NATURE OF SOFTWARE

Abstract

Software is not a product, it is a medium in which we store knowledge. As simple as this idea
seems, the consequences of it are quite significant. If software is not a product, then software
development is not a product production activity, despite the common practice of managing it as
such. Most organizations believe that the job of software developers is to build a system that we
then ship to a customer. It is not. The system we build and ship to the customer is actually the
by-product of the real activity which is learning. Software development is the activity of
acquiring certain kinds of knowledge. The software medium is simply the place we put the
knowledge once we have acquired it.

Acquiring knowledge can also be considered as the reduction of ignorance. This article makes
some observations on the nature of software, the acquisition of knowledge, the reduction of
ignorance, and how these activities play out in the software field. In doing so, it helps to explain
the some of the classic conundrums of software development.

THE FIVE ORDERS OF IGNORANCE

Software is not a product, it is a medium for the storage of knowledge. It is the fifth such
medium that has existed since the beginning of time. The other knowledge storage media being,
in historical order: DNA, brains, hardware, and books.

DNA is where species store knowledge. When certain kinds of knowledge are stored in DNA,
the individual members of that species do not need to acquire that knowledge themselves. For
instance, as humans we do not need to learn how to make our pancreas function—this
information is stored in our DNA and is available when we are born.

The brain is the second knowledge storage medium. Humans, for instance, store most of their
behavioral knowledge in this medium. Our social interactions are largely learned, not inherited.
To differentiate DNA and brain-stored knowledge consider our use of language. All humans are
born with a capacity to learn a language—this capability is “hard-wired” in DNA. The specific
language, however, is learned and can be relearned, replaced, or forgotten. This knowledge is
stored in the brain.

The third knowledge storage medium was hardware. We do not usually think of hardware as
“knowledge storage,” but that is a large part of its function. For instance, humans are poor at
empirically determining the size of objects, so we take a length of wood or metal and store on it
the knowledge of standard length. We can then use this ruler to reapply the knowledge of
standard length.

Books are an entirely passive storage medium. In order to activate knowledge in a book, it must
first be removed to another medium, typically the brain.

The most recent knowledge storage medium, invented a mere fifty years ago is software.

At the present time, we are spending enormous amounts of effort in transferring our knowledge

from the other media into software. The reason is that, in software, knowledge is made both
usable and transportable. Knowledge in software is active. It has escaped the confinement and

243



volatility of knowledge in brains, it avoids the passivity of knowledge in books. It has the
flexibility and speed of change that is missing from knowledge in DNA or hardware.

But software is a medium not a product. The true “product” of our efforts to “produce” software
is the knowledge contained in the software. In fact, it is rather easy to produce software in any
quantity. It is much harder to produce software that “works”, because we have to understand
what “works” means. It is easy to produce software that is simple, because it doesn’t contain
much knowledge. It is easier to produce software using an application generator, because much
of the knowledge is already stored in the software. It is easy to produce software if I've already
produced this type of software before, because I have already obtained the necessary knowledge.

The hard part of building systems is not building systems, it is in discovering what we are trying
to or need to build—it is in acquiring the necessary knowledge. If software is not a product then
software development is not a product production activity—it is it is a knowledge acquiring
activity. However most companies that build software use business models derived from product
production. The nature of a product production business is quite different than the nature of a
knowledge acquisition or learning business.

If the job of software development is to acquire knowledge, what can we assert about the
knowledge we have to gain? For every thing we know, we must also have a certain amount of
“ignorance”. Ignorance is the other side of the coin of knowledge. If we view systems
development as the acquisition of knowledge, then we can also view it as the reduction or
elimination of ignorance. So what kinds of ignorance might we exhibit in software development
and how would we deal with it?

The Five Orders of Ignorance

Based upon what we know and what we don’t know, we can classify ignorance into strata or
layers. These are called the “Five Orders of Ignorance”. Understanding their nature and how
we navigate through them as we create software can be helpful in explaining some of the
characteristics of software development. They also help to explain some of the artifacts of the
software development environment, and some of our behaviors working in this environment.

In computer systems, the first number is usually zero. And so it is with Orders of Ignorance.

0'® Order Ignorance (00T)—Lack of Ignorance
I have Zeroth Order Ignorance (00I) when I (provably) know something.

I must be able to demonstrate my knowledge, otherwise it may be that I do not actually know
what I profess to know. This is clearly demonstrated in the testing of systems—we cannot
generally assert that a system works (ie., contains and executes the correct knowledge) unless we
can prove it through the agency of a controlled test.

1% Order Ignorance (10I)—Lack of Knowledge
I have First Order Ignorance (10I) when I don 't know something.

244



If I don’t know something but I am aware of this fact, then I have 101. 10l is basic and
identifiable lack of knowledge. This occurs when we build systems of a type we have already
built. If we had already built tax systems for US State Governments and were then engaged to
build a tax system for (say) the State of Ontario, Canada. We know that the tax systems are quite
different, but they are also probably somewhat similar too. Without much effort, we could
construct a series of questions the answers to which will give us the information we need.

2" Order Ignorance (20I)—Lack of Awareness
I have Second Order Ignorance (201) when I don'’t know that I don’t know something.

This means that not only am I ignorant of something (I have 10I), I am also unaware of that fact.
I don’t know enough to know that I don’t know enough. In essence 10l is a type of knowledge
(I do know what I don’t know) whereas 20l is a more complete form of ignorance. It is 20I that
causes us most problems in building software systems and is also the primary reason why we test
software at all.

3" Order Ignorance (30I)—Lack of Process
I have Third Order Ignorance (301) when I don't know of a suitably efficient way to find out
that I don’t know that I don’t know something.

30l is lack of process and when coupled with 20I presents an intractable problem, since I will
continue to be unaware of those things I do not know. In software development, we must add the
“suitably efficient” proviso, since there is always a default 301 process available—build and
ship the system. In this case the customer can be relied upon to inform us of all the things we did
not know. However, this process is usually neither suitable nor efficient.

4™ Order Ignorance (40I)—Meta Ignorance
I have Fourth Order Ignorance (40I) when I don 't know about the Five Orders of Ignorance.

401l is meta ignorance. While it provides a nice recursive end to the Five Orders of Ignorance,
there are practical applications of the concept.

The Five Orders of Ignorance in Software Development
Each of the Five Orders of Ignorance plays a significant role in building systems.

00I: 00l is knowledge. These are the correctly functioning elements of the system that I
(obviously) understood, and can successfully incorporate into the system. When I have 00, I
have the answer to the problem. The direct transfer of what we already know into an executable
form does not usually require much effort. If this knowledge is already stored in an executable
form (eg. a reuse library), it may require even less effort than if the knowledge is stored in a
brain (an experienced developer) or in book form (documentation).

10I: These are the known variables, where the presence of the variables is known, but their
specific values are not. When I have 101, I have the question. Usually, having a good question

245



makes it fairly easy to find the answer. Checklists of questions to ask customers are evidence of
101. Many paper driven methodologies are of this form.

20I: This is the source of most problems in software development. Not only do I not have the
answer I need, I don’t even have the question. This is where we start many projects. At the
beginning of a project we know, from experience, that there are many things we will have to
learn. We just don’t know what they are. 20l explains, for instance, most variation in project
estimates, and the concept of “contingency” (to allow for things we haven’t thought of). It also
explains the famous “90% complete program syndrome” where a programmer asserts with
conviction that he or she is 90% complete, sometimes for months on end. The programmer is
not lying, but certainly is not correct. But because of 20], the actual progress cannot be
determined with accuracy. 20I also accounts for rework cycles, late phase “gotchas” and is the
primary reason why we test systems.

30I: Coupled with 201 as it usually is, 301 presents a real danger—I don’t have a way to
resolve my lack of knowledge in the time I have available. At their core all software
development methodologies are actually 301 processes, though they are rarely considered as
such. The true purpose of a methodology is to show me the areas of the product or process or
whatever where I have lack of knowledge. However, many methods and modeling approaches
and development disciplines purport to give us the answer. They cannot. They do not contain
the answer. The best that systems modeling can do is show me whether or not I have the answer.
Conforming my understanding of the system’s knowledge to the syntax of the model forces me
to consider whether I can describe it or not. If I can, I must have the knowledge; if I cannot, I do
not have the knowledge.

The job of a 301 process is to convert 201 into 101 (and sometimes into 00I). Testing systems
is a 30I process whose job is to (a) prove that our 001 is correct and (b) find out if there is
anything else we don’t know about. Note, we would never explicitly test for 101

401: As a meta-level is more abstract. However, the fact that most organizations creating
software believe and act like their job is to build product rather than acquire knowledge is proof
of 401. In doing so, companies simply do not take care of the primary product: the knowledge
within the system. This is clearly shown in the area of Configuration Management (CM). Most
CM systems will dutifully return (say) version 1.1 of the system specification upon request. But
what is in version 1.1 of the system specification? The CM systems have no visibility into the
content. They do not manage the knowledge asset, they manage the buckets into which we put
the knowledge asset.

The critical levels in software development are 201 and 30I. Most of our product-directed work
occurs in the reduction of 201. The development and use of software and systems
methodologies are 301 processes.

There is a further differentiation: there are two kinds of work we do in software development: the
application of what we know, and the discovery of what we don’t know. The same kind of
process does not work for both activities. Processes that work for 00I and 10I (the application
of what we know) do not work for the less deterministic 201 and 30I discovery activities.

246



This is further evidenced in the application of processes and methodologies. These are often sold
as providing the answer, when in reality and correctly used they provide the question.
Disciplined use of such approaches then gives the appearance of increasing the amount of work
to be done. Coupled with the additional knowledge necessary to actually use the tools and
methods, and the source of resistance to such process changes is clear. Practically speaking, we
need to separate the application from the discovery activities and apply strong process to the
first, and allow freedom for the second. These polarities are not possible in the same definition
of process; we cannot both constrain and liberate at the same time.

In essence the working system is merely the proof that we have obtained (and validated) the

necessary knowledge. The functioning system is the yproduct of the activity of acquiring
knowledge that is the core of software development.

247



