Exploring the Limits of Computing Through Exhaustive Search

Jeffrey L. Lehman
Huntington University

Abstract
Many computing problems can be solved by identifying all possible moves or
combinations of events and then picking the best solution. Problems in this domain
provide fertile ground for exploring problem representation, storage requirements, and
computational complexity. The problems and solution approaches are easy to
understand, yet quickly push the memory and storage limits of a personal computer. This
paper describes insights from a preliminary investigating of two exhaustive search
problems, the 15-puzzle and Rubik's cube. The insights gained by looking at exhaustive
search problems can be integrated into classroom discussions and projects.

1. Introduction

There are many problems that can be solved by identifying all possible moves or
combinations of events and then picking the best solution. This exhaustive search approach has
been called “God's Algorithm”, meaning God can see all possible solutions, thus can always give
the optimum result. A trivial example is the game of game of Tic-Tac-Toe which can be solved
almost instantly given the limited number of combinations. A non trivial example is the game of
checkers with 5 x 10%° possible positions which was solved in 2007 (Schaeffer, et al., 2007). The
traveling salesman problem, determining the optimum route for visiting cites, can be solved if
the number of destinations is limited, but is considered “impossible” for larger numbers of cities
given the required computational time.

Many problems can be simplified by identifying symmetries or sub-problems. These
symmetries reduce can greatly reduce the search space and make the problem feasible to solve.
In some cases, however, it may not be desirable or possible exploit these symmetries. As
processing power and memory increase the number of problems that can be addressed by
exhaustive search should increase (Nievergelt, 2000). Problems in this domain provide a fertile
ground for exploring problem representation, storage requirements, and computational
complexity.

This paper describes insights from a preliminary investigating applying exhaustive search
to the 15-puzzle and Rubik’s cube. Section 2 begins with an overview of the 15-Puzzle and
Rubik’s cube. Section 3 describes solution and problem representations. Section 4 describes
two exhaustive search approaches using database and memory structures. Section 5 describes
insights and conclusions. '

16

2. The Problems

2.1 The 15-puzzle
The 15-puzzle consists of a 4 by 4 grid of tiles placed in frame. There are fifteen tiles

labeled “1” to “15” with one open space. The tiles surrounding the empty space may move “up”,
“down”, “left” or “right” into the open position. The puzzle is solved when the tiles are arranged
in ascending order with the space at the end. While puzzle promoter Sam Loyd is often given
credit for creating the puzzle, it was most likely created in the early 1870’s by Noyes Palmer
Chapman, a postmaster from Canastota, New York. The puzzle was a national craze throughout
the 1880’s appearing in numerous news paper advertisements, editorials, and poems (Slocum,
2006).

2.2 Rubik’s Cube

The Rubik’s' cube consists of six sides with nine tiles on each side. Each side has a
unique color. Using the quarter turn model there are twelve possible moves. Each of the six
sides of the cube may move a quarter of a turn left or right. Using the face turn model there are
18 moves. Each face may move left and right 90 or 180 degrees. The puzzle is solved when the
tiles are positioned with a unique color on each side. The Rubik’s' cube was invented in the
1970’s by Hungarian Erno Rubik, a sculptor, architect, and teacher of three dimensional design
courses (Singmaster, 1982). Like the 15-puzzle the Rubik's cube also achieved national craze
status in the 1980's.

3. Solution and Puzzle Representation

3.1 Solution Graph

Both the 15-puzzle and Rubik's cube can be solved, at least in theory, by using exhaustive
search to create a solution graph of all possible positions. The graph is created by starting with a
solved puzzle state, applying each of the valid moves, and storing each successive move until all
combinations are stored. The move that generates the new state is stored providing a link
between each state. The level number describing the distance from the origin is also stored. An
optimum solution can be found by finding the puzzle in the graph and tracing its path back to the
solved state.

The 15-puzzle has 16!/2 = 10,461,394,944,000 combinations. Research has shown the
upper bounds for the hardest puzzle to be 88 moves. In other words, the minimal distance to the
origin or solved state is at most 88 moves, thus most “scrambled” puzzle can be solved with 88
moves (Culberson & Schaeffer, 1996). The Rubik’s cube has 4.33 x 10'° possible combinations.
Researchers believe that the minimal distance to the origin is somewhere in the low 20's.
Current research has shown this number to be at most twenty-five (Rokicki, 2008). Given the
large number of combination states that must be stored can a solution graph for the 15-puzzle

17

and Rubik’s cube be created using current processing power and stored using current storage
capacities? We next looked at the storage requirements for each puzzle.

3.2 Character Array Representation

The 15-puzzle contains tiles labeled “1” to “15”. An array of 16 characters can be used
to store this data. Each tile is represented by a single character with a hex representation used to
map tiles “10” to “15” to characters “A” to “F”. Character “0” is used to represent the open tile.
The first character represents the top left tile. A solved puzzle with the open tile in the lower
right would be represented by the array “123456789ABCDEFO0” using 16 bytes.

A Rubik’s cube has six sides with nine tiles on each side. An array of 54 characters can
also be used to store this data. Each tile is represented with a single character corresponding to
the color e.g. ‘R’ red, ‘B’ blue, ‘G’ green, ‘O’ orange, ‘Y’ yellow, and ‘W’ white’. Each tile is
numbered and grouped by its corresponding side. The characters 1 to 9 represent the tiles for the
first side, characters 10 to 18 represent the tiles for the second side, etc ... The array
“RRRRRRRRR GGGGGGGGG BBBBBBBBB 000000000 YYYYYYYYY
WWWWWWWWW?” would represent a solved puzzle using 54 bytes.

3.3 Bit Array Representation

A bit array can reduce the storage requirements for the 15-puzzle. A four bit binary
number can be used to represent each tile rather than a 1 byte character. A solved puzzle with
the open tile in the lower right would be represented by the bit array “0001 0010 0011 0100 0101
01100111 1000 1001 1010 1011 1100 1101 1110 1111 0000 using 8 bytes.

A bit array can also be used for the Rubik’s cube. Three bits can be used to store the
color value for each tile e.g. ‘000’ red, ‘001’ blue, ‘010 green, ‘011’ orange, ‘100’ yellow, and
‘101’ white’. Using this representation each state can be stored using 20.25 bytes (3 bits * 54
tiles = 162 bits = 20.25 bytes).

3.4 Alternate representations

There are many variations for storing each puzzle. For the 15-puzzle the position of each
tile could be stored rather than the value of each tile. The position of the blank tile would not
need to be stored as it could be easily calculated as the only position not included. This would
reduce the storage to 15 bytes using array of characters and 7.5 bytes using the array of bits.
While the storage requirements are reduced additional processing time would be needed to
determine the location of the open tile and to handle partial-byte values.

3.5 Storage Implications

The choice of how to represent each state has both memory and long term storage
implications. The storage structure limits how many states can be stored. The type of storage

18

structure will affect may affect processing time. Additional processing is needed to extract data
when unique bit representations are used rather than standard byte length structures.

Most personal computers today (May 2009) have 2 to 4 gigabytes (GB) of memory and at most 1
terabyte (TB) of long term storage available. As can be seen in the table 1, storing all states of
either the 15-puzzle or Rubik’s cube is not feasible given the proposed problem representations.
Test algorithms will need to focus on a subset of the problem such as generating all moves for a

given level or distance from the origin.

Another option is to use a smaller version of the problem such as the 8-puzzle. The 8-
puzzle is a smaller 3 by 3 grid version of the 15-puzzle. It has 9!/2 = 181,440 combinations.
Given its smaller size a graph of the 8-puzzle can easily be generated. The hardest 8-puzzle
requires at most 31 moves (Reinefeld, 1993).

Puzzle Total States Bytes per State Total Storage
8-Puzzle 181,440 9 2 MB
15-puzzle 10,461,394,944,000 16 152 TB
15-puzzle 10,461,394,944,000 8 76 TB
15-puzzle 10,461,394,944,000 7.5 71 TB
Rubik's cube 43,300,000,000,000,000,000 54 2,126,580,512 TB
Rubik's cube 43,300,000,000,000,000,000 20.25 797,467,692 TB

Table 1. Storage Requirements

4. Algorithms

The Java programming language was used to implement each of the problems. A class
structure was developed to store the state of a puzzle and perform the valid moves. Three “proof
of concept” algorithms were created. Two used a database and one used memory structures to
store the solution states. Each puzzle used the character array representation (Section 3.2). Each
sample algorithm was run on a personnel computer with either an Intel Core 2 1.86 GHz or 2.0
GHz processor with 2 GB memory.

4.1 First Database Approach

The first database approach used a MySQL database to store the puzzle states (Figure 1).
The solved puzzle state was first added to the database (insert). The initial state is marked as
“unvisited”. Within the loop the next unvisited state S is retrieved from the database (query). If
state S exists, all new moves from this state are added to the database (insert). The new moves
are marked as “unvisited” In should be noted that duplicate states are automatically discarded
by the database due to the use of primary keys. State S is marked as “visited” (update). This
process is repeated until all states are visited.

19

Stop = False
Create solved state |
Add I to database (insert)
Do
Get next unvisited state S and store in result set (query)
If S exists
Insert next moves from S into database (insert)
Mark S as visited (update)
Else
Stop = True
End If
Loop Until Stop

Figure 1. First Database Approach

The first database approach required approximately 4.5 hours of computational time to
generate all 181,440 states for the 8-Puzzle (see Appendix Table 2). Reinefeld had reported that
it took less than 1 hour on a Sun workstation in 1993 (Reinefeld, 1993). Obviously
improvements were needed.

4.2 Second Database Approach

The second database approach (Figure 2) modified the algorithm to retrieve all unvisited
states from a given level rather than the single next unvisited state (query). This reduced the
need to retrieve individually retrieve each unvisited state. Within the loop all next moves from
each state in level X are inserted into the database (insert). This eliminated the need to mark
each state as “visited” thus eliminating all update queries with the database. This approach
allows subsequent levels to be generated from X to N.

Create solved state |
Add solved state I to database (insert)
X=1
While X less than N
Get all states S from level X and store in result set RS (query)
For each state S in RS
Insert next moves into database (insert)
Increment X
End For
End Loop

Figure 2. Second Database Approach

20

The second database approach required approximately 30 minutes of computational time to
generate all 181,440 states for the 8-Puzzle.

Further refinement of the algorithm was made to bulk insert new moves rather than
individually inserting each new state. New states were added to a list in memory and inserted at
the end of each level or once 1,000,000 states were identified. Using multi-valued inserts
reduced the time to generate all 181,440 states for the 8-Puzzle to approximately 12 seconds.

The refined database approach was used to test the 15-puzzle. The first 22 levels for a
total of 12,318,701 states were generated in approximately 20 minutes before the program
terminated due to memory issues (see Appendix Table 3). The refined database approach was
used to test the Rubik’s Cube. The first 6 levels containing 983,926 moves were generated in
approximately 8 hours.

4.3 Memory Approach

The third approach used memory structures to store the puzzle states (Figure 3). A Java
Collection Framework (JCF) list was used to store all “unvisited” states and a hash map was used
to store the visited states. The solved puzzle state I was first added to the hash map and list.
While the list was not empty, the next state S was retrieved and removed from the list. Each
subsequent move from S was added to the hash map and list if it did already exist. This process
is repeated until all states are visited.

Create solved state |
Add I to hash map
Add I to list
While list not empty
Remove next state S from list
For each next move from S
If next move does exist in hash map
Insert next moves from S into hash map
Add next moves from S to list
End If
End For
End Loop

Figure 3. Memory Approach
The memory approach was used to test the 8-puzzle. It took approximately 8 seconds of
computational time to generate all 181,440 states for the 8-Puzzle. The memory approach was

used to test the 15-puzzle. The first 21 levels for a total of 6,516,290 states were generated in
approximately 3 hours before the program terminated due to memory issues. The memory

21

approach was used to test the Rubik’s cube. The first 6 levels for a total of 983,926 states were
generated in approximately 2 minutes before termination due to memory issues.

5. Insights and Conclusions

This paper described a preliminary investigating of using exhaustive search algorithms to
address the 15-puzzle and Rubik's cube. Representations for solution graphs were developed and
implemented using the Java programming language. Test algorithms using a MySQL database
and memory structures were implemented. While the test algorithms were of limited success, the
insights gained by looking at exhaustive search problems can be integrated into classroom
discussions and projects.

A key decision in any problem implementation is how to represent the problem. In many
of the programs we develop for introductory programming courses the variable types we select
have little consequence. The use of 4-byte numeric variable has no impact when memory is not
an issue. These decisions, however, greatly affect the storage requirements for a program and
can dictate success or failure of the algorithm. Further research is needed to determine the
optimal representation for the 15 puzzle and Rubik’s cube.

The choice of data structures also has an impact on processing time. In the sample
implementations I quickly observed that as expected using a hash map to store values reduced
the processing time rather than using a sequential list. In my investigation I found that [needed
a hash map that could guarantee sequential access to all elements. It illustrates the need to have
a lower-level understand of the implementation of the programming libraries we use. We talk
about these structures in data structures courses, but [am not sure that it is really clear until you
have a real problem to apply them to.

There are always ways to refine and improve algorithms. This was illustrated by the test
algorithms developed for this research. The database approach required 4.5 hours of processing
time. By modifying this algorithm to use multi-valued database inserts the time was reduced to
30 minutes. By eliminating the database and using a memory approach the time was reduced to
12 seconds. Further refinements are needed.

A key benefit of my research was that it required me to gain a deeper understanding of
computer software and hardware. The preliminary investigation required a better understanding
of the Java memory model. Additional command line argument is needed to make use of the
machine memory. The database approach required looking at the efficiencies of queries. For
example a single insert query with multiple values is more efficient than individual inserts.
Limits were also determined such as how much data can be sent via a single MySQL insert
statements. It also required looking at the amount of data that can be stored in a single table.

22

Both the Rubik’s cube and 15-puzzle are good research problems as they are fairly easy
to understand, yet quickly push the memory and storage limits of a personal computer. Both of
the problems are scalable. Ifthe 3 x 3 cube is ever “solved”, the 4 x 4 cube is waiting. The same
is true for the 15-puzzle with the 5 x 5 24-puzzle. They provide fertile ground for exploring
problem representation, storage requirements, computational complexity, and algorithms. While
using exhaustive search to solve the 15-puzzle and Rubik’s cube will require further research to
address processing and storage limits it can serve as a benchmark for exploring the limits of
computing.

Acknowledgements
The author wishes to acknowledge the Ferne and Audry Hammel Research Endowment
of Huntington University for a 2008 mini-grant supporting this research.

References

Culberson, J. C., & Schaeffer, J. (1996). Searching With Pattern Databases. (pp. 402-416).
Springer-Verlag.

Nievergelt, J. (2000). Exhaustive Search, Combinatorial Optimization and Enumeration:
Exploring The Potential of Raw Computing Power. (pp. 18-35). Springer.

Reinefeld, A. (1993). Complete Solution of the Eight-Puzzle and the Benefit Of Node Ordering.,
(pp- 248-253).

Rokicki, T. (2008). Twenty-Five Moves Suffice for Rubik's Cube. CoRR , abs/0803.3435.

Schaeffer, J., Burch, N., Bjiirnsson, Y., Kishimoto, A., Miiller, M., Lake, R., et al. (2007).
Checkers Is Solved. Science , 317, 1518-1522.

Singmaster, D. F. (1982). Handbook of Cubik Math. Enslow Publishers.

Slocum, J., & Sonneveld, D. (2006). The Fifteen Puzzle. The Slocum Puzzle Foundation.

23

Appendix

Level States
Level States 0 1
0 1 1 2
1 2 2 4
5 2 3 10
3 3 4 24
4 16 2 o4
6 107
5 20 7 212
6 39 8 446
7 62 9 946
3 116 10 1948
9 152 11 3938
5 236 12 7808
13 15544
1 396 14 30821
12 748 15 60842
13 1024 16 119000
14 1893 17 231844
15 2512 18 447342
16 2485 19 859744
7 5638 20 1637383
3 5525 21 3098270
22 5802411
19 10878
20 16993 Table 3. 15-Puzzle States
21 17110 (complete through level 22)
22 23952
23 20224
24 24047
25 15578
26 14560
27 6274
28 3910
29 760
30 221
31 2

Table 2. 8-Puzzle States (complete)

24

