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L Abstract

Fractal geometry and chaos theory are deeply rooted in significant problems in the
history of mathematics and science. While mathematicians have sought geometrical
descriptions of space with its properties, scientists have attempted to characterize the
physical properties of fundamental entities present in space and time. These separate
investigations frequently influenced each other and led to profound theories, answers,
and models. However, at the same time new problems repeatedly arose internal to
mathematics and externally in the applications to which mathematics was applied.
Fractal geometry issues from these antecedents in response to features and processes
in nature not easily represented by historical mathematical models.

II. Introduction

At the foundation of scientific inquiry lies an implicit assumption that some level of inherent
orderliness drives all natural processes. Were this not so, there would be little point in scientific
investigations that seek patterns in observed phenomena and the codification of such patterns in
mathematical formulas. Once observed behaviors and processes have been embedded in a scientific
theory and summarized by mathematical “laws”, the bane and blessing of such theories and laws are
observed pertebations, or deviations, from the patterns that would otherwise be predicted by the
mathematical model. These deviations exist as a bane because they challenge the accuracy and
correctness of the theory articulated to explain the prior observations. On the other hand,
discrepancies from prediction provide the fertile ground needed for theoretical refinements, further
inquiry, and alternative explanations.

Some natural events present themselves as more than slight pertebations to the orderly progression
that typically characterizes more normative ongoing processes. Chaotic tornados, violent
earthquakes, conflagrations in forests and buildings, these and other events contain such turbulent
complexities that hope seems to evaporate when it comes to summarizing and formulating these
behaviors at a level that would permit predictability. This kind of chaos does not just seem to exist
as a more complex but inscrutable level of order. Rather, in these turbulent events, nature does not
appear to obey any laws at all. Moreover, and fundamentally more disturbing, in some processes
nature seems to slide with ease from a state of order into a state of chaos. Previously rhythmic hearts
transition to fibrillation, chemical solutions tip from stability into instability, laminar fluid flows melt
into turbulent vortexes, and in all of these predictability gives way to unpredictability. It would seem
that chaos and order exist as opposite forces competing in many processes to win the outcome.
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II1. An Amazing Historical Progression

In the last quarter of this century significant progress has been made in unlocking the features of
chaos itself. Although these achievements have been remarkable, they have derived from a stream
of important historical precedents. Ancient efforts by the likes of Ptolemy, Copernicus, and Kepler
to describe space with its panoply of stars and planets eventually gave rise to the elaborate theories,
techniques, and experiments of Newton, Bernoulli, Coulomb, Einstein, and innumerable others
directed at identifying the foundational relationships between both macro and micro objects in terms
of force, mass, charge, distance, temperature, energy, and velocity. (See Appendix - The Quest for
The Basic Entities and Features Of Nature).

As might be expected, the conception of physical phenomena and their relationships in space were
repeatedly refined when reality was observed to significantly deviate from predictions made using
existing conventional theories. By way of example, Copernicus abandoned geocentrism as he and
others observed that the Ptolemaic assumptions were generating enormous deviations in the
prediction of lunar eclipses and the expected positions of planets. Kepler concluded that elliptical
orbits better explained planetary motion when his calculations of Mar’s orbit disproved circularity.
The failure of Newton’s predecessors to adequately account for the effect of centripetal force upon
planetary orbits caused him to refine Kepler’s assumption of a force emanating from the sun into a
force formula based upon the masses of the involved bodies. One hundred years later Coulomb
succeeded in explaining that the forces that bind atoms together to form molecules, and the forces
that bind molecules together to form solids or liquids are electrical rather than the gravitational forces
codified by Newton. Unfortunately, the strong Coulomb forces of repulsion in the positively charged
atomic nucleus should by themselves cause the nucleus to fly apart. This deviation from the model
of electricity and magnetism eventually forced the postulation of the muclear force studied from the
days of Einstein onward. If pertebations and problems such as these identified for prior ages were
instrumental in provoking scientific advances, then it is problems associated with predicting the
behavior of turbulent and wild phenomena in this day that have incited new mathematical and
scientific assaults upon the domain of chaos.

IV. The Paradigm of the Magnets

Interestingly, experiments involving the laws of attraction
themselves as represented by the force equations of Newton
and Coulomb have given remarkable insights into certain
important features of chaos. An example of one such
experiment is shown in the
accompanying illustration. When three
equally charged magnets placed at the
vertices of an equilateral triangle
compete to attract a pendulum
suspended over them, the boundaries
between the distinct basins of
attraction for the three magnets are
infinitely frayed. Between a pendulum

BASINS OF ATTRACTION FOR 3 MAGNE
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release point that eventually leads to a given magnet and a release point that finally leads to a second
magnet, there exists interposing points associated with the basin of attraction of the third magnet.
The structure of these frayed boundaries are best understood as a Cantor Set in which pairs of points
in a given basin of attraction are separated by an intervening region not part of that basin. (See
Appendix -Cantor Set Construction).

Surprisingly, the great British mathematician Arthur Cayley anticipated the mathematical possibility
of a kind of unpredictable chaotic behavior in the context of Newton’s method for finding roots. In
an article published in the American Journal of Mathematics (Vol. 2, 1879) Cayley conjectured that
the zeros of certain function could compete to attract the sequential approximations of Newton’s
method in such a way that predicting the zero to which a given initial point might eventually converge

could be difficult indeed. The function fix) = ﬁ - 2 ilustrates this behavior to the extent that
+ X
three points compte to attract the outcome of the Newton process. Magnifications of the boundaries
between any two initial points in distinct basins of attraction show that between them are points of
the third basin. In these boundary regions, prediction is rendered useless and the simple and orderly
algorithm of Newton’s method becomes the epitome of unpredictability. An initial point that
converges to a particular root lies next to an initial point that converges to the other zero and lying
between the two of them is an initial point that diverges to infinity. (See Appendix - Newton’s

Method Applied to fix) = a 1 pe - -i-g- ) A complicating dynamic exists for some functions such as
+ X

f{x) = x'® in that the zeros can actually “repel” the successive approximations generated by Newton’s

method leading to a kind of instability that ultimately causes the sequence to diverge.

Infinitely frayed boundaries between competing states appear in many mathematical phenomena that
are well related to natural processes. For example, applying Newton’s method to a simple cubic
equation over the complex numbers exhibits three basins of attraction not unlike the basins of the
pendulum experiment. The three complex zeros act as the magnets, and the boundaries between their
basins of attraction are intricately frayed in a Cantor-like pattern of interposing regions (See Appendix

- Newton’s Method Applied to z* -1 = 0 ). For some functions, Newton’s method can behave with

incredible stability leading to a zero with unfailing predictability. For other functions Newton’s
method can be devastatingly unstable reducing an otherwise orderly algorithm to unfathomable
unpredictability.

The attractive gravitational forces of Newton and the attractive and repulsive magnetic/electric forces
of Coulomb take on new and heightened meaning as a paradigm for understanding the dynamics of
chaos. Like Newton’s method iterative processes can be profoundly predictable much like the
monotonic and repetitive back and forth swing of a simple pendulum. On the other hand, the same
pendulum becomes wildly unpredictable in the presence of even a simple system of three magnets.
Incredible progress has been made in unlocking how iterative physical phenomena transition from
stability to chaos. In fact, by the late 1970's Mitchell Feigenbaum had completed initial mathematical
explorations into he dynamics of such transitions. It is almost startling to realize that Feigenbaum’s
profound work was performed by iterating initial values through simple quadratic polynomials of the
form f{x) = Ax(1-x).
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V. Recent Insights into the F res of Ch

Beginning with an arbitrary initial value x,, the long-term behavior of the sequence of outcomes f{x,),
ff(x,), fif(x;), fifi(% ), ... produced by repeated composition of f{x)=Ax(1-x) with itself depends
completely upon the value of the parameter A. (See Appendix - f{x) = Ax(1-x). )

f(x) = 2.8x(1-x) flx) = 3.2x(1-x) f{x) = 4x(1-x)
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When A=2.8, the sequence is attracted to x~0.6428571 where y=x and f{(x) intersect. When A=3.2,
two points x=0.513 and x~0.799 act as a period 2 attractive cycle. However, repeated iteration of
an arbitrary initial point through f{x) =4x(1-x) fails to lead to periodic behavior of any finite cycle.
The first two settings of parameter A (specifically 2.8 and 3.2) lead to stable and very predictable
behavior under iteration whereas fixing parameter A at 4 leads to rather erratic and very unpredictable
behavior. A plot of these various long term behaviors under iteration for each setting of the
parameter A between 1 and 4 leads to the Feigenbaum chart shown below.

A close examination of the Feigenbaum map for increasing values
of parameter A reveals a sequence of successive “bifurcation”
points where the attractive cycle transitions from period 1 to
period 2, then from period 2 to period 4, and so on. The
accumulated horizontal distances from one bifurcation point to
the next approximates a geometric series with ratio converging 0.5
to 1/4.669. Careful computation of these distances and their sum 7/
identifies the so-called Feigenbaum point A=3.5699456 dividing
the period doubling regimine on the left from the chaotic region ¢ &
to the right. Setting the paramter A to a value smaller than 1
3.5699456 implies that iteration through fix)=Ax(1-x) will
eventually stabilize into a repetitive cycle through a finite set of Feigenbaum Point -
iterates. On the other hand, setting the parameter A to a value

greater than 3.5699456 implies that iteration through f{x)=Ax(1-x) will behave in a different and far
more erratic manner. Remarkably, many and possibly all turbulent phenomena transition from
stability to chaos through the same period doubling pattern of bifurcations represented by the simple
class of quadratic functions f{x)=Ax(1-x). Monitoring transition from one level of periodicity to the
next in the process of an iterative phenomena provides the possibility of predicting the onset of chaos.
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Once transitioned into chaotic state, a number of features are known that further characterize iterative
behaviors to the right of the Feigenbaum point. Firstly, distinct initial values selected for iteration can
behave in wildly different manners. Some enter periodic patterns while others never repeat.
Moreover, infinitely many initial points of both kinds exist throughout the domain and they are utterly
intermixed. Secondly, although there are infinitely many inital points that iterate to periodic cycles,
their values must be specified with infinite precision since the slightest variation can result in non-
periodic behavior. In fact, the values visited repeatedly by a periodic initial point under iteration can
act as repellers driving the iterative regimine into non-periodicity and thereby into unpredictable orbits
if there is the slightest error in maintaining their values. This sensitivity to slight pertebations makes
predicting the behavior of a particular initial value virtually impossible in the absence of infinite
precision.

Amazingly, there exist infinitely many narrow windows of stability within the chaotic regimine to the
right of the Feigenbaum point. For a given parameter value A within such a window, all initial points
from the domain are eventually attracted to the same repetitive cycle dependent only upon the period
associated with that particular window. Unfortunately, despite the fact that these windows are
numerous, their narrow width within the Feigenbaum map suggest that only a slight variation in the
setting of A can trip the iterative behavior from one of incredible stability back into the chaotic
regimine that surrounds the window to the right and left. (See Appendix - The Feigenbaum Map).

VL.  Some Final Musings

The model of attraction and repulsion implicit in magnet or charged particle experiments as well as
in applying Newton’s method to certain functions suggests that the dynamics of iterative phenomena
may involve competitions between vastly different domains of behavior. Slight changes in the initial
state or minor pertebations in the settings of the system may trip the phenomena from one of inherent
stabiltiy into one of utter unpredictability and erratic turbulence. The fact that patterns are now
understood that signal when a system is transitioning from stability to chaos increasingly raises the
possibility that human intervention may be possible in order to prevent or at least ameliorate the
effects of turbulent natural events. However, and more fundamentally, if systems present in nature
are susceptible to small pertebations, then humankind has a heightened obligation to exercise care and
responsible stewardship so as not to upset and despoil beneficial stabilities invested into creation by
the Maker.
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THE QUEST FOR THE BASIC ENTITIES

AND FEATURES OF NATURE
//\
Ptolemy 135 AD GEO-CENTRIC THEORY '/ ( <’ \
| /

. . &_—/// /
The center of the universe is the EARTH. All other \:O/

heavenly bodies revolve about the earth in circular orbits.

Copernicus 1473-1543 HELIO-CENTRIC
THEORY
Kepler 1571-1630

The center of the universe is the SUN. All other
heavenly bodies revolve about the sun in elliptical orbits.

Newton 1642-1727 The FORCE of attraction between two B> <&
bodies depends upon their MASSES
and the DISTANCE between them. m, m,

(1666) F =k pe)
Bernoulli 1700-1782 The VELOCITY of gas molecules is
proportional to the TEMPERATURE. VekT
(1738)

Coulomb 1736-1806 The FORCE of attraction between
two charged particles depends upon
the magnitude of the CHARGES
and the DISTANCE between them.

(1785)

Einstein 1879-1955 MASS and ENERGY are
related by the SPEED of light. E=Mc?
(1905)

Terence H. Perciante
Wheaton College
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A. BINARY TREE LEADING TO ALL POINTS IN CANTOR SET
B. ITERATED REMOVAL OF MIDDLE SUBSEGMENT
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Convert every binary decimal in the interval [0,1] into an infinite string of L’s
and R’s by assigning 0 to L, 1 to R. (Example .00110101... LLRRLRLR...)

Then every binary decimal in [0,1] identifies a unique path of L’s and R’s
through the binary tree to a point in the Cantor Set.

THE CANTOR SET MUST CONTAIN AS MANY
POINTS AS THERE ARE IN THE INTERVAL [0,1].

Terence H. Perciante
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NEWTON’S METHOD APPLIED TO fix) = — L+ - 23
1+ x?? 36

-2 -1 1 2
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Y ¢,15 NEWTON’S METHOD |

APPLIED TO Z3>-1=0

BASINS OF ATTRACTION
FOR THE THREE ROOTS

z=1 z=-1:8; q )
2 1 R R AR P |
\. J
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The Feigenbaum Map For f(x) = Ax(1-x)

IGENB MAP ATTRACTOR REPELLER EXAMPLE
A=1 to A=3 Fixed points of f{x)
1 Solve Ax(1-x)=x
/ X = ﬂ x=0
05 ; 4 3
’ | A=2.8 Attractor Repeller
ot/ x=.6428571  x=0
1 2 3 H H
=1t0 A=3.449489 | Fixed points of ffx)
1 Solve ff(x) =x
o
B L VR L Y e R
0.5 . 24 :
/ x = —Ai—l | A=32 Attractor Repeller
x=.799455 x=0
ok x=.513044 x=.6875
1 2 3 : :
=1 to A=3.544090 Fixed points of fffi(x)
1 f k=0 :
e x = A—E— A=3.5 Attractor Repeller
05 —1 . x=.50088421  x=0
/ o g @D 2 a7 245 x=.38281968 x = 7142857
; x=.87499726 x=.428571
o . : x=.82694071 x=.8571429
A=1 to A=4
: Feigenbaum Point A=3.5699456 i A=3.73861 Period 5 Window to the
1 divides Period-Doubling Pattern : right of Feigenbaum Pt.
2 to the left from the Chaotic Region
to the right. x=.840357
0.5 x=.501559
Within the Chaotic Region, narrow x=.934643
o 4 Windows of Stability appear. x=.228373
1 2 3 T + x=.658814

Feigenbaum Point -

Terence H. Perciante
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