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First, a few comments about the title: Originally I used it as a hook to get students
interested in a colloquium talk. I wanted them to wonder what Bach variations had to do with
calculus or more generally how music and math might be related. I believe the title worked
based on the attendance at undergraduate colloquia at several institutions.

While it is quite common for professionals (doctors, lawyers, academics, etc) to be
talented in many ways, including musical talent, there is a special connection between music and
mathematics. Musicians collectively are not more talented in mathematics than other
professionals, but mathematicians do seem to have more musical talent than other professionals
and other academics. This group, the ACMS, is a prime example. Our shared Christian
commitment may skew the sample, but I maintain that even a random MAA sectional meeting
would have more musical talent among its number than a regional group of historians, or
chemists, or dentists. Right here in this room we have several people with considerable musical
talent/gifts and even a few who have studied music seriously enough that the decision to be a
mathematician rather than a musician was not an easy one.

There are undoubtedly many who remember the Presidents’ Concert at the 1989 AMS-
MAA Joint Meeting in Phoenix given by the Leonard Gillman, pianist and President of the
MAA, and William Browder, flutist and President of the AMS. These same individuals reprised
the concert in a Past-Presidents’ Concert at the 1992 AMS-MAA joint Meeting in Baltimore.
Also a few readers, who did graduate study at the University of Wisconsin, will recall the
biannual brown-bag noon-time piano recitals given by Larry Levy, Professor of Mathematics.
Professor Levy completed an MA in piano performance at Julliard before switching careers to
mathematics.

This math-music connection makes it easier to understand that there might be a
connection between Johann Sebastian Bach and the mathematician most closely associated with
the beginning of the subject of the Calculus of Variations, Johann Bernoulli.

1. They are contemporaries: Johann Sebastian Bach (1685-1750)
Johann Bernoulli (1667-1748)
2. Each lived and worked in German speaking Europe:
Bach in various parts of northern Germany
Bernoulli in Basel, Switzerland
3. Each was the most prominent member of an extended family with many
members distinguished in their respective fields.

The Bernoulli family has its origins in Belgium/Holland and were in the spice
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import and distribution business. They moved to Basel, Switzerland when King Phillip of Spain
made life for Protestants - the Bernoullis were Calvinists - very unpleasant in Holland. Brothers
Jacob and Johann were the first to show significant mathematical talent.

(Nicolaus)
1623-1708
Jacob (Nicolaus) Johann
1654 —1705 1662-1716 1667 —1748
Nicolaus | Nicolaus I Daniel Johann Il
1687 —-1759 1695 -1726 1700-1782 1710-1790

Johann lll Jacob Il
1744 -1807 1759-1789

The Bernoulli family
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Music was the Bach family business. Both prior to J. S. Bach and subsequent to him
family members, both men and women, were church musicians, composers, and/or court
musicians.

Johann Ambrosius

Johann Sebastian

w/\ 1685-1750 (Anna)

Wilhelm Carl Philipp Gottfried Johann Johann
Friedemann Emannuel Heinrich  Christian  Christoph

1710-1784 1714-1788 1724-1763  1735-1782 Friedrich
1732-1795

The Bach family Wilhelm

Friedrich
Ernst

1759-1845

4. J. S. Bach and Johann Bernoulli even look like brothers. Can you tell who is who?
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The similarity above is largely due to 18" Century formal dress and the practice of portraits
being done in a quarter face on manner. Bach is on the right.

In a previous version of this paper I raised the questions of 1) whether these two
Johanns had ever met each other or if 2) members of their families had done so. My answers
were: 1) probably not and 2) quite likely so. Further research has led me to the following more
definitive answers.

1. Although J. S. Bach lived in several places, he never left northern Germany. Johann
Bernoulli grew up in Basel, lived for a time in Paris where he taught calculus to L’Hopital and
sold to him the famous theorem. He also worked at the university in Groningen, Holland before
returning to Basel in 1705 to take up the chair in mathematics upon the death of his brother
Jacob. Thus I am convinced the two Johanns never met but, given the small size of the
intellectual class in 18" century Europe, quite likely knew of each other.

2. An answer to the second question comes from looking at the court of Frederick the
Great in Potsdam/Berlin. J. S. Bach’s son, Carl Philipp Emmanuel Bach was a musician, playing
the clavier/harpsicord in the court of the King Frederick from 1740 — 1768. Johann Bernoulli III,
the grandson of Johann, was a member of Frederick’s Berlin Academy of Science from 1763 —
1807. The young Johann Bernoulli was almost surely acquainted with the much - 30 yrs - older
C. P. E. Bach. If we include in the Bernoulli family Johann Bernoulli’s mathematical “son”,
Leonhard Euler, then we certainly have a connection. Euler spent the years 1741 — 1766 at the
Berlin Academy. Although I have seen no direct evidence of a social relationship during those
25 years, Euler and C. P. E. Bach certainly knew each other and must have often been at court
functions together. I will leave it to cultural historians to uncover the parameters of the
relationship. I have discovered that J. S. Bach himself visited his son at the court in Potsdam
twice, once in 1741 and again in 1749 and might well have met Euler on those visits.

This cultural history, leads us to the Calculus of Variations. In the first third of the 20"
century every serious undergraduate math major would have been introduced to the Calculus of
Variations and it was a significant topic of graduate school programs and research, e. g. at
Chicago in the 1920’s. However, it is almost never appears in the undergraduate curriculum
today and has been subsumed within the area of Optimal Control Theory.

It is a shame it has disappeared, since it is a beautiful part of mathematics, it is a
relatively easy application of calculus, and is connected to historically important problems. One
of these problems, the brachystochrone, is mentioned in virtually every calculus text but never
solved in them. In fact the 2004 publication [Van Brunt] by Springer-Verlag is the first
introductory text on the topic in at least twenty years.

So what is the Calculus of Variations? Let’s begin by looking at three problems.
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A. Find the curve of shortest distance between two points in the plane.
Let the two points be (0,0) and (x1,y1). Choose a function y = f(x) so that the f(0) =0,
f(x1) =y, and which minimizes the arc length integral

I = J; 1+ dx.

B. Find the curve between two points which produces the minimum surface of revolution.
Let the axis of rotation be the x-axis and the two points be (0,0) and (x;,y;). Choose a
function y = f(x) so that the f(0) = 0, f(x|) = y1, and which minimizes the surface area integral

I = inyds = 21rjly 1+ (") dx |
0 0

C. Find the curve between two points along which the descent is quickest.
( the brachystochrone or brachistochrone problem)

Let the two points be (0,0) and (x;,y1) and for convenience let the positive y-axis be
oriented downward. For simplicity assume zero initial velocity and ignore all forces except
gravity, i.e. the motion is frictionless. From conservation of energy we have

—12-mv2 =mgy OR v =,2gy

Choose a function y = f(x) so that the f(0) = 0, f(x;) =y, and which minimizes
% % ds 5 A1+ ()
A A 8 e
0

0o v 0 1/2gy

These three problems all involve minimizing an integral of the following form

I I i‘¢(x,y,y3dx

Calculus of Variations provides us with a general approach to minimizing integrals of
this type. Suppose y = f(x) is the minimizing function and y = F(x) is another function fitting
the boundary conditions. Let n(x)=F(x)—f(x) be the perturbation function. Then for y =
f(x) + an(x) we have y = f(x) when a=0 and y = F(x) when a= 1. Also note that the
integral is a function only of the parameter a.

l(a) = f¢(x,f (x)+an(x), f'(x) + an'(x))dx

If y = f(x) is the minimizing function, then this integral musty have a minimum value at
a =0 for any function n(x) satisfying the boundary conditions m(x¢) =0=7n(x)) .
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As good calculus students we minimize I(@) by setting I’(a@) = 0. If the integrand is

nicely behaved, uniformly continuous with partial derivatives uniformly continuous for instance,
then

I'(a) -4 I (x, f(x) + an(x), f'(x) + an'(x))dx

_ f = [p0. £ (5) + an(a), £ (5) + an(x)) e

I'(a) = %m;ndx

Integrating the second term above by parts gives us
d
I'(a) = I —qﬂdx+( ] J. (

The boundary conditions eliminate the middle term above to yield

L N7, d| o
I'(a) = j. X_ —(—ﬂ m(x) dx
ANZ AN
Since we are assuming that a minimum exists at a=0, J’(0) = 0 independent of what
the perturbation function n(x) happens to be, we are forced to conclude that on

& d|A
the interval (xo,X1) 5}" - E ﬁy

This partial differential equation is called the Euler-Lagrange equation and must be
satisfied by the integrand ¢(X,y,y’) and our minimizing function y = f(x).

]7] dx

Let’s use this Euler-Lagrange equation to solve our three problems.
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2
A. Shortest distance: Minimize I = J.o 1+(y,) dx

d y'
In this case the Euler-Lagrange equation becomes E (1 +(y r)2

[

=0

Yy '
From whichweseethat —— = C = y' =K = y=Kx+L,
h_'_(J/r)Z

This is the equation of a straight line as we expected. Thus if a minimal distance curve exists it
must be a straight line.

To prove that this is a minimum, consider two curves ¥ =Kx+ L anda

perturbation Y + 77 . The difference between the lengths of these two curves is

J:I\/1+()7+n')2dx _ _[ 1+ () dx

Expanding the first term above using Taylor’s Theorem the above difference becomes for some
0<a<l

3

77!2 dx

_ I y oo, 1 1

o A1+ " +5[\/1+()7+a77')2
x'l 7712
Xo 2 (1+(}7+a77!)2)3

The first term above is zero and the second is an integral of a positive quantity unless

= Crf. dx

Xo

\

n = 0 , which by the boundary conditions would mean that 77 = 0.

That is, unless 7] = 0 we can conclude that the second curve has longer length.

B. Minimal surface of revolution: Minimize
I = Iinyds = 2n j-]y1/1+(y’)2 dx
0 0

Here the Euler-Lagrange equation becomes

d w'
Ny - 242 | <o
dx 1+(yr)2
OR
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n2
= 1+ O - _L
A1+ ()
w0y
VI+OY (+o)
This looks positively awful !  But if we simplify by removing the denominators, we have
0=1+0")") -0 A+ON) =" A+ ")) -y()y"

This further simplifies to 0 =1+ (y ')2 - yy ! which is a relatively easy 2" order
ordinary differential equation. Since the independent variable, x, is missing the following
substitution

, dy o _ dw _ dw dy ,
w=y === , = = w
Y= o=/ Y= @
gives us a separable 1* order equation. 1+w = yww =y _dy w

2
This is easily solved yielding Ky =vVI+w”",

Now solving for w we get another separable 1** order equation.

y = w = LA

This time the integration is not so easy to do.

J- 1%

While trig substitution will yleld an equlvalent solution involving the natural logarithm, using
MAPLE to integrate we see that

_ X X
cosh I(Z) =—+b or equivalently YV = @ cosh(; + b].

a a

You ought to recognize this curve as a catenary, the shape taken by a wire hanging between two
telephone poles. Thus the curve with minimum surface area is a catenary.
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n2

5 i+ 0)
C. Curve of quickest descent: Minimize I = dx
0 42y

Here the Euler-Lagrange equation becomes

_11+_<y'>2_1[ y ]=0

D) y3/2 dx y1/2\/1+(y')2

OR
l /1_'_())1)2 N yn
2 y3/2 yl/2/\/l+(yr)2
1oy Oy
2y3/2\/1+(yr)2 y|/2(1+(yr)2)312

This is really awful. But simplifying as before leads to an equation very much like the previous

2
problem. 1+ (y') + 2){)/" =0 Using the same substitution used in the
minimal surface problem our solution proceeds as follows.

1+ w2 +2yw'w=0
K = y1+w?) = y1+("))

I\/_dy Idx OR J'r))’;dyy—

This last integral can be done by hand or by using MAPLE but both lead to very messy

/ 2 -1 ] N\
expressions involving both Ky —)Y and tan l( Ky-y 2 y and so is not very insightful.

Below is anther way to do the integral which is quite informative.

. 2 0
For 0 <80<2nr let y=Ksm2—- Then J‘-—& = J \/; dy
2 VKy -y’ K-y
\[I?smz 1-cos@

~Ks ngcosgdé? KJ.sm —df = KJ‘ do = g(o sind)

‘\/1? COS
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Thus in terms of the parameter & our solution for the brachystochrone problem is
K .
X = E(B—smﬂ) + C
6 K
= Ksin®= = —=(1-cos
y 5 = ¢ 0)

We find that C = 0 by using the initial condition that when =0, (x,y) = (0,0). This is the
familiar set of parametric equations for a cycloid made from a circle of radius % .

In the last two problems the reader is left with the task of showing that a catenary curve
and a cycloidal curve can be found that satisfy the initial conditions of the respective problems.
Analysis can also show that these minimal curves are unique.

I hope that this brief excursion into the Calculus of Variations has convinced you that the
subject should not be forgotten. It seems to me that at a minimum this topic is a good project for
a senior math major.
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