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Introduction

Computational quantum chemistry combines the power of computation and the founda-

tions of physics to understand chemical problems. The dawn of quantum chemistry coincided

with the advent of computing technology as solving many-electron problems could take years

if done by hand. Modern day computation comes from the use of nodes and processors to

handle large amounts of data typically run through a quantum chemical software package.

These quantum chemical methods are the foundation of most theoretical studies of medium

to small molecules.

Two theories have driven this approach, wave function theory(WFT) and density func-

tional theory(DFT). Wave function techniques look at each individual electron while density

functional theory view the total electron density to explain chemical properties. Each give

reasonable solutions that agree with experimental results, but theory did not always match

experiment. New and better methods had to be obtained over the years in order to accu-

rately describe the motion of the electrons so that reliability and confidence was reached.

This is still the goal of method development today as the many-body problem becomes much

more complicated for increasingly challenging cases.

Density Functional Theory

Hohenberg-Kohn Theorems

DFT was founded upon the theorems of Hohenberg and Kohn in their 1964 paper on an

inhomogeneous electron gas.1 The first theorem states that the ground-state electron density,

ρ(r), uniquely determines the external potential, v(r). This was proved for a non-degenerate

ground-state, Ψ, using reductio ad absurdum by assuming that another potential, v′(r) could

equal the same electron density, ρ(r), corresponding to the ground-state, Ψ′.1 Then it could
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be shown that for Ψ,

E = 〈Ψ|Ĥ|Ψ〉

=

∫
v(r)ρ(r)dr + 〈Ψ|(T̂ + V̂ee)|Ψ〉 (1)

where T and Vee are the kinetic energy and electron-electron repulsion operators. Similarly

for Ψ′,

E ′ = 〈Ψ′|Ĥ ′|Ψ′〉

=

∫
v′(r)ρ(r)dr + 〈Ψ′|(T̂ + V̂ee)|Ψ′〉 . (2)

Unless v′(r) equals v(r) plus a constant, then Ψ and Ψ′ must be unequal and therefore, since

ground-states are energy minima,

E < 〈Ψ′|Ĥ|Ψ′〉

=

∫
v(r)ρ(r)dr + 〈Ψ′|(T̂ + V̂ee)|Ψ′〉

= E ′ +

∫
[v(r)− v′(r)]n(r)dr (3)

and

E ′ ≤ 〈Ψ|Ĥ ′|Ψ〉

=

∫
v′(r)ρ(r)dr + 〈Ψ|(T̂ + V̂ee)|Ψ〉

= E +

∫
[v′(r)− v(r)]n(r)dr . (4)

Combining the two gives a contradiction such that

E + E ′ < E + E ′ . (5)
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Therefore, the first theorem is proved for a non-degenerate ground-state. It can also be

expanded to include those with degenerate ground-states.2

The second theorem defines that the ground-state electron density can be used to attain

the minimum energy of a system by using the variational principle to solve the universal

functional, FHK . It can easily be seen in the above equations that the energy is dependent

on ρ(r) making it a functional of the density such that

E = Ev[ρ(r)] . (6)

This can be mathematically proven because the Hamiltonian is dependent upon the number

of electrons, N, and v(r), which can both be calculated using ρ(r).3 Due to this dependence,

it can also be shown that the universal functional is dependent on ρ(r) so

FHK [ρ(r)] = 〈Ψ|(T̂ [ρ(r)] + V̂ee[ρ(r)])|Ψ〉 . (7)

The energy equation is then

Ev[ρ(r)] =

∫
v(r)ρ(r)dr + FHK[ρ(r)] . (8)

If the exact ground-state electron density can be chosen, then the minimum ground-state

energy can be determined. Therefore, by the variational principle, if any other density is

used it will be larger than this energy. The optimal ρ(r) is one that does not change the

energy upon small variations of the density3 where

δ(E − µρ(r)) = 0 (9)

such that ∫
ρ(r)dr = N (10)
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and µ is the Lagrange multiplier.

The variational principle will be more deeply explained in our discussion of Hartree-

Fock, but for now we turn our focus to the universal function, FHK[ρ(r)], more commonly

called the Hohenberg-Kohn functional. The emphasis on this functional is expressed here

since its form allows the ground-state energy of a system to be solved by using only the

ground-state electron density which is a three-dimensional term. Therefore, it would only

require the minimization of this three-dimensional term to determine the minimum energy.1

It also makes DFT an exact theory, because the functional describes motion of all electrons

independent of the external potential allowing us to know all information of the system.

The problem is that no one knows the form of this functional and its classification as a non-

deterministic polynomial-time hard (NP-hard) problem means that no one will probably ever

solve it since it would take on such a challenging form.4 Yet, theoretical chemistry found a

way to somewhat resolve this in 1964 by Kohn and Sham.

Kohn-Sham Formalism

The Hohenberg-Kohn functional is then the holy grail of DFT as it makes DFT be

an exact theory, but what is more commonly referred to when we are talking about the

theory is Kohn-Sham DFT (KS-DFT) which made DFT a viable option. Its sudden increase

in popularity was a direct product of its inclusion of orbitals to DFT. These orbitals are

similar to those in Hartree-Fock such that each orbital contains one-electron and assumes

no interaction of the electrons between each orbital. The density can then be written as a

sum of the wave function consisting of those orbitals with

ρ(r) =

∫ N∑
i

|φi(x)|2dσ , (11)
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where x is the spatial and spin coordinates. Kohn and Sham then started changing the

original DFT energy by writing the Hohenberg-Kohn functional as

FHK[ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + EXC[ρ(r)] , (12)

where Ts[ρ(r)] is the kinetic energy of assuming a non-interacting system, J [ρ(r)] is the

Coulombic interaction energy, and EXC[ρ(r)] includes the exchange and correlation energy

of that same system.3 This third term is the base of KS-DFT with it reintroducing the

interaction effects that govern a system.

The exchange-correlation functional, EXC[ρ(r)], is now the only part of the energy formula

that is unknown. This functional includes the more challenging quantum effects of electron

interaction. Part of it is the examination of the exchange energy which deals with the

exchange of two identical fermions, specifically electrons, and the antisymmetric properties

that must be satisfied. Another part is the correlation energy which describes the interaction

of electrons with each other such as attraction and repulsion. This differs from the classical

Coulombic energy because it takes into account that we cannot know both the position

and momentum of an electron simultaneously due to the Heisenberg uncertainty principle.

Furthermore, it covers both the effects of the instantaneous electron-electron repulsions and

the degeneracies of a system.

Approximate Exchange-Correlation Functionals

For the same reasons that the Hohnenberg-Kohn functional is unsolvable, the exchange-

correlation functional is most likely to never be solved. Describing the quantum effects of

how all the electrons interact is still a goal for chemical theorists but due to the Kohn-Sham

formalism, solving the equations of Kohn and Sham can lead us to what is called the Hartree-

Fock limit. This limit assumes a non-interacting system and for simple molecules can give

reasonable energies, but when the exchange-correlation energy is added it can greatly increase
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chemical accuracy. The exchange-correlation energy is found using approximate functionals

that simplify how we calculate for the quantum effects. They are used extensively throughout

all fields of chemistry and can help point chemists toward the correct way of understanding

things mechanistically. The approximate functionals are so commonplace that they are

commonly just referred to as the functional itself. For brevity, when the word functional is

used, it is implied that it is of the approximate form.

Localized-Spin Density Approximation

The first approximations made were local such that they relied on the spin densities,

spin-orbitals, and their derivatives at a point of the energy density.4 The simplest of the

local methods is the localized spin-density approximation where the density is split into α

and β spins, so that the energy is dependent upon them so that

E = TS[ρα, ρβ] +

∫
dr vext(r)ρ(r) + J(ρ) + EXC[ρα, ρβ] . (13)

This approximation is exact for a uniform electron gas as solved numerically using quantum

Monte Carlo methods.5

The two most common types to be used are the Vosko, Wilk, and Nusair functional and

the Perdew And Wang functional. The VWN method slightly changes the spin-polarization

term such that

εVWN
c (rs, ζ) = εc(rs, 0) + εa(rs)

[
f2(ζ)

f
′′
2 (0)

]
(1− ζ4) + [εc(rs, 1)− εc(rs, 0)]f2(ζ)ζ4 (14)

and

f2(ζ) =
f1(ζ)− 2

21/3 − 1
. (15)
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The Perdew-Wang method parameterizes much differently with

εPWc/a (x) = −2αρ(1 + αx2)ln

(
1 +

1

2α(β1x+ β2x2 + β3x3 + β4x4

)
. (16)

The difference between the two equations of the methods within the same category of lo-

calized spin-density approximation shows the complexity of creating one of them, but these

still depend upon a strict simplification. LSDA can be used to solve exactly for a uniform

electron gas. This method then works by assuming a uniform electron gas which is untrue

for all chemical systems of interest. This shows that the LSDA method is insufficient since

it underestimates the correlation energy by approximately 10%.6

Generalized Gradient Approximation

The generalized gradient approximation makes major improvements upon LSDA by hav-

ing the energy dependent upon the gradients of the spin densities. Using the gradients as

well as the spin densities allows flexibility such that we are no longer approximating a uni-

form electron gas and are instead looking at a slowly varying electron gas.7 This is still not

a perfect picture but greatly improved the results of LSDA, with its form for the exchange

energy being quite simple,

EGGA
x [ρ, x] =

∫
ρ4/3F (x)dr , (17)

where F (x) can be changed depending on the functional used.

The functionals work by separately solving for the exchange energy and the correlation

energy. Two popular methods that use a GGA approach is by the Perdew-Burke-Ernzerhof

functional (PBE) and Becke’s functional (B88) from 1988. For the exchange term, the two

vary in the parameterization of the F (x) function with the energy of PBE being

EPBE
x = −

∫
ρ4/3

[
3

4

(
3

π

)1/3

+
µs2

1 + µs2

κ

]
dr , (18)
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and the energy of Becke’s exchange being

EB88
x =

∑
σ=α,β

∫
ρ4/3σ

[
3

4

(
6

π

)1/3

+
βx2σ

1 + 6βxσ sinh−1 xσ

]
dr . (19)

PBE has its own correlation functional that traditionally goes with its exchange term also.

It works by fitting its parameters not to empirical data but to some conditions of functionals

themselves. One of these is that the correlation potential will show asymptotic behavior

corresponding to the function, −1
2
αr−4, where α is polarizability.6 This differs greatly from

the widely used Lee, Yang, and Parr correlation functional which was parameterized using

experimental data from helium atoms. It is worth noting and writing out this equation given

its frequent occurence in DFT where

εLYP
c = −4a

ραρβ
ρ2 (1 + dρ−1/3)

−{
ραρβ
18

[
144(22/3)CF

(
ρ8/3α + ρ

8/3
β

)
+ (47− 7δ)|∇ρ|2−

(45− δ)
(
|∇ρσ|2 + |∇ρβ|2

)
+ 2ρ−1(11− δ)

(
ρσ|∇ρσ|2 + ρβ|∇ρβ|2

) ]
+

2

3
ρ2
(
|∇ρσ|2 + |∇ρβ|2 − |∇ρ|2

)
−
(
ρ2α|∇ρβ|2 + ρ2β|∇ρα|2

)}
(20)

such that

ω =
exp−cρ−1/3

ρ14/3 (1 + dρ−1/3)

and

δ = cρ−1/3 +
dρ−1/3

(1 + dρ−1/3)
.

Hybrid Functionals

Equations 19 and 20 form the precursor to the most popular functional in all chemistry,

B3LYP. B3LYP stands for Becke 3-parameter Lee, Yang, Parr, and it is a hybrid functional

composed of the B88 exchange term and the LYP correlation term so that the full exchange-
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correlation energy can be given by

EB3LYP
XC = (1− a)ELSDA

x + aEexact
x + b∆EB88

x + (1− c)ELSDA
c + cELYP

c , (21)

where experimental data determines what a, b, and c will be.

Hybrid functionals have become quite popular over the years as they help with the

self-interaction error which is part of the static correlation deficiencies in KS-DFT. The be-

ginnings of hybrids start with the Adiabatic Connection Formula (ACF) as its base. This

formulation allows us to connect energies of an interacting system with energies of a nonin-

teracting system.8 Part of this is the introduction of the λ term which is a coupling constant

that can range from zero to one.9 The addition of this term makes the exchange-correlation

energy an integral

EXC =

∫ 1

0

〈Ψλ|V hole
XC (λ)|Ψλ〉dλ (22)

where the variation of λ causes the electron-electron interactions to be “turned on”.6

The best aspect of hybrids is then their ability to mix some Hartree-Fock exchange with

DFT. One of the first attempts at mixing the two is the half-and-half approach which, as

the name explains, calculates the exchange energy with half of the exact exchange energy

and half the combination of the exchange and correlation energy computed using LSDA,

EH+H
XC =

1

2
Eexact

x +
1

2

(
ELSDA

x + ELSDA
c

)
. (23)

Typically this enhances the equations such that the results are closer to the experimental

values than without the addition of Hartree-Fock exchange, but caution must be taken when

adding this exchange to DFT. Certain amounts of the exchange work better for different

functionals where PBE0, similar to PBE, includes 25% Hartree-Fock exchange and another

method called TPSSh (Tao-Perdew-Staroverov-Scuseria) only uses approximately 10%.
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Meta Functionals

The use of second-order derivatives of the electron density create a class of functionals

called meta functionals. These will use either the Laplacian of the density (∇2ρ) and/or the

density of the kinetic energy (τ). The two are related due to both using the same orbitals

and effective potential.10 Although, the kinetic energy density is more popular and takes on

the form

τ(r) =
1

2

occ∑
i

|∇φi(r)|2 . (24)

The popularity of τ(r) over the Laplacian is in its numerical stability and the kinetic energy

density’s ability to recognize one-electron character by its relation to the von Weizsäcker

kinetic energy,

τW (r) =
|∇ρ(r)|2

8ρ(r)
. (25)

TPSS, created in 2003, is one example of a meta-GGA.11

As new advances have been made in calculating the exchange-correlation energy a new

class has emerged called the hybrid meta functionals. These include many of the popular

Minnesota functionals, including the well-known M06-2X functional . This particular func-

tional is specifically good at calculating main-group thermochemistry, kinetics, noncovalent

interactions, and electronic excitation energies to valence and Rydberg states.12 Although

not as popular as B3LYP, M06-2X has become a staple in the computational community for

a variety of systems performing well during rigorous testing against multiple databases.10

Applications of DFT

Density functional theory is elegant and complex due to the variety of functionals avail-

able. Bringing the discussion back to a more tangible representation of DFT, an example of

its application is presented.
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(a) S-warfarin (b) R-warfarin

Figure 1: S - and R- warfarin optimized structures using M06-2X/aug-cc-pVTZ. Annotated
lines show the hydrogen bonds between the warfarin and the two amino acids. For each
figure, on the left is the arginine-222 and on the right is the histidine-242.

Warfarin

A study of S - and R- warfarin was done using the hybrid meta-GGA, M06-2X. The

project was collaborative with experimental work done at Belhaven University and compu-

tational work done at Taylor University. The experiment consisted of adding halogens (F,

Cl, or Br) to the phenyl ring of the warfarin to be identified using fluorescent spectroscopy.

The motivation of the project was to create better pharmaceuticals by testing the binding

of warfarin to blood serum albumin. The computational side of the study was done to con-

firm experimental results and to compute the possibility of different halogens at differing

positions having an impact on binding energy.

The initial calculations were done in gas phase, then the polarizable continuum model was

used to replicate the dielectric constant of water simulating a solvent environment. Warfarin

binds specifically to three amino acids within a pocket of the blood serum albumin and

these are arginine-222, histidine-242, and tryptophan-214. Only arginine-22 and histidine-

242 were studied initially so compiled data is only shown for the binding interactions between

the warfarin and Arg222 and His242. Binding energies for tryptophan have been done and

do not show significant changes from the calculations without it. Therefore, the values in

Fig. 2 are still deemed acceptable for comparison with experiment.
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Figure 2: Table of the binding energy of fluorinated warfarin derivatives using M06-2X/aug-
cc-pVTZ.

The results were promising using the density functional M06-2X with the large basis set

aug-cc-pVTZ. From the data, Fig. 2, it can be shown R-warfarin has a stronger binding

affinity which is in agreement with experimental work done at room temperature, where

R-warfarin is bound 1-3 kcal mol−1 greater than S -warfarin. For the derivatives, the -

ortho position nearest His242 has the weakest binding affinity due to increased repulsion

of the fluorine with the nitrogen on histidine. Then, the -ortho position nearest Arg222

has the strongest binding affinity due to increased attraction with the nitrogen system on

arginine. Solvation with water agrees with expected behavior since it is a high dielectric

constant solvent. This causes charge stabilization of the dipole moments of the amino acids,

especially the electron deficient nitrogen system of Arg222. Overall, the study of warfarin

to blood serum albumin shows one application in which DFT may be used successfully with

complementary results from experiment confirming this.
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Wave Function Theory

Hartree-Fock Theory

The base of all wave function theory is Hartree-Fock (HF). HF was created by Douglas

Hartree and Vladimir Fock and is an approximate method for calculating atomic and molec-

ular properties.13 The approximation comes from the fact that only one-electron systems,

such as the hydrogen atom, may be solved analytically. Consider helium, a two-electron

system, where the Schrödinger equation is

(
− ~2

2M
∇2 − ~2

2me

∇2
1 −

~2

2me

∇2
2

)
ψ(R, r1, r2) +(

− 2e2

4πεo|R− r1|
− 2e2

4πεo|R− r2|
+

e2

4πεo|r1 − r2|

)
ψ(R, r1, r2)

= Eψ(R, r1, r2) , (26)

and under the Born-Oppenheimer approximation which fixes the nucleus at the origin of the

chosen coordinate system, Eq. 26 becomes

− ~2

2me

(∇2
1 +∇2

2)ψ(r1, r2)−
2e2

4πεo

(
1

r1
+

1

r2

)
ψ(r1, r2)

+
e2

4πεo|r1 − r2|
ψ(r1, r2) = Eψ(r1, r2) . (27)

There is a term in Eq. 28 called the interelectronic repulsion term, 1
|r1−r2| , that appears

in all many-electron systems and is the reason the Schrödinger equation cannot be solved.

The distance between the electrons cannot be quantified since their motions are correlated,

therefore, the value cannot be determined.6 Hartree and Fock bypass this conundrum by

approximating the electrons such that there is no electron correlation. The theory puts an

electron into a one-electron molecular orbital, then places the orbital into the average effective

potential created by all the other electrons. This method is done to every electron in the
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system and allows the problem to be converted from a many-body problem into multiple

two-body problems.

Before explaining HF theory further, the creation of a many-electron wave function will

be briefly explained. Although not mentioned in depth in this paper, the start to building

molecular orbitals is by choosing a basis set which contains the atomic orbitals. Atomic

orbitals are typically Gaussian functions and the linear combination of them makes molecular

orbitals such that

φ =
n∑
i

ciχi . (28)

From the molecular orbitals, a Hartree product(HP) can be made,

ΦHP(r1, r2, ... , rN) = φ1(r1)φ2(r2)...φN(rN) , (29)

but a more proper way to arrange the orbitals would be in a Slater determinant (ΦSD),

ΦSD(r1, r2, ... , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) ... φN(r1)

φ1(r2) φ2(r2) ... φN(r2)

...
...

. . .
...

φ1(rN) φ2(rN) ... φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (30)

Slater determinants (SDs) are preferred since they are properly antisymmetrized meaning

that under the exchange of any two electrons the sign of the determinant will flip. Different

types of wave functions can be created using SDs. If a single configuration (SC) wave function

is made, then only one SD is used while if a multiconfigurational (MC) wave function is made,

then a linear combination of SDs is used. In HF theory, a SC wave function is forced,

ΨSC = ΦSD . (31)

Now that the basics of a wave function are understood as linear combinations of atomic
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orbitals and molecular orbitals, the self-consistent nature of the Hartree equations may be

discussed 1 . As stated earlier, HF places one-electron as if it is feeling the average effective

potential of all the other electrons. In mathematical form, the average interactions are

carried out by the Fock operator,

F̂i = ĥi +

Nelec∑
j

(Ĵj − K̂j) . (32)

The Fock operator is an effective one-electron energy operator that describes the electronic

kinetic energy and the attraction of the nuclei through the ĥi operator and also describes the

repulsion to all the other electrons through the Ĵ and K̂ operators.6 The Ĵ and K̂ operators

have a much more thorough derivation, but the importance of them is not forgotten as they

represent the classical repulsions between two charge distributions, the Coulomb integral,

and the correlated motion of electrons, the exchange integral, respectively.

By using a SD that is diagonalized, a set of pseudo-eigenvalue equations such that

F̂i|φi〉 = εi|φi〉 (33)

where εi is the energy of the orbital, φi. Self-consistency is then attained because a specific

Fock orbital can only be determined if all the occupied orbitals are known and each one of

those orbitals are at an energy minimum.6 Figure 3 shows how Eq. 33 is used self-consistently

in a computation. From the geometry of a molecule, coordinates can be obtained to create

the initial molecular orbitals. These one-electron MOs are used to create the Fock matrix,

1The equations from this point will be written in Dirac’s bra-ket notation where

|ΨSC〉 = ΨSC

〈ΨSC| = Ψ∗
SC

〈ΨSC|ΨSC〉 =

∫
Ψ∗

SCΨSCdr

〈ΨSC|Â|ΨSC〉 =

∫
Ψ∗

SCÂΨSCdr

and Â is any operator such as the Hamiltonian, Ĥ.
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Figure 3: Flow chart of HF self-consistent equations in a computation.

Eq. 33, which is then diagonalized and the orbital energies are compared to the energies

from the set before. If the energy is not within a certain threshold of the last one, then

the new MOs from diagonalizing the matrix are used in the next iteration. If the energy

is within the threshold, then the solution is considered to be converged and the molecular

orbitals produced may be used to calculate the properties of interest for the system. Figure

4 shows the output from the Psi4 quantum chemistry program2 where the H2 molecule was

solved for using the scheme in Fig. 3.

Hartree-Fock theory works as a good initial calculation to get the molecular orbitals for

higher levels of wave function theory, such as coupled-cluster and configuration interaction,

but is not recommended to report values due to its neglect of electron correlation. Electron

2Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries,
and Interoperability”, R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince III, E.
G. Hohenstein, U. Bozkaya, A. Yu. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James,
H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer III, K.
Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill,
J. Chem. Theory Comput., 13(7) 3185–3197 (2017).
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Figure 4: SCF iteration for the H2 molecule.

correlation energy is what is missing in HF calculations and therefore it is defined as the

difference between the exact non-relativistic Born-Oppenheimer energy of a system minus

the HF limit,

Eexact − EHF = Ecorr . (34)

The correlation energy is split into static and dynamic due to our limited understanding

of how electrons interact, but complete separation of the two is impossible because they

are inherently related. The separation is imposed by defining static correlation as a more

permanent repulsion that arises due to near-degeneracies while dynamic correlation is defined

by the instantaneous electron-electron repulsions. HF despite neglecting the correlation

energy is about 99% accurate at predicting the energy, so different methods typically build

upon its base such as adding more determinants where the wave function is

ΨMC = c0ΦHF +
N∑
i=1

ciΦi . (35)

Multiconfigurational Self-Consistent Field Theory

Multiconfigurational self-consistent field (MCSCF) is one method which uses multiple

Slater determinants to describe systems in which a single electron configuration is no longer
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an adequate way to represent the system’s character. This is because of the orbitals are

changing as bonds are changing along the intrinsic reaction coordinate (IRC).6 As a bond is

broken, the orbitals it forms can change occupation and therefore, electronic configurations

which can result in degeneracies. If the number of configurations is equal to one, then MCSCF

is equal to a Hartree-Fock (HF) method but if it is larger than one, then multireference

character becomes more pronounced and its effects cannot be assumed insignificant.

For example, consider the dissociation of the H2 molecule. As the distance increases,

the electrons can either pair together into one orbital or separate with one electron in each

orbital. In HF, the electrons are forced into double occupation neglecting the single-electron

occupation possible because it uses a single SD, one electron configuration. Using MCSCF,

we are able to use both electron configurations, two SDs, giving flexibility to our wave

function and representing the chemical system more accurately.

Figure 5: First MO of H2 at various bond lengths a) 0.734 Å, b) 2.500 Å, c) 5.000 Å.

Mathematically, MCSCF linearly combines the SDs into a configuration interaction (CI)

wave function,

ΨMCSCF =
N∑
i

ciΦi , (36)

where the coefficients in front of the determinants and the molecular orbitals (MO) are both

optimized by the variational principle.14 The linear variation method takes the coefficients

of the basis functions and minimizes them by taking the derivative of the energy with re-

spect to the coefficients creating the MOs. Unique to MCSCF methods, the MO coefficients,

ci, are changed in the active space while the coefficients relating to the contribution of the
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determinants to the wave function are also changing. This allows us to look at different

arrangements of the electron configuration in varying MOs, therefore including the multi-

configurational energy contributions. When two configurations have about the same energy

and both contribute to the wave function of a system, we call them near-degenerate. Then,

MCSCF is really good at accounting for near-degeneracies which correspond to static cor-

relation. To include the effect of dynamic correlation, a separate calculation is normally

performed after running a MCSCF calculation.

Figure 6: Separation of the molecular orbitals into inactive, active, and virtual spaces ac-
cording to the complete active space self-consistent field method.

A key component of MCSCF is selecting an active space and one way to do this is using

the complete active space self-consistent field method (CASSCF) which separates the MOs

into inactive, active, and virtual spaces. The inactive orbitals will always be doubly occupied

while the virtual orbitals will be unoccupied. The active space contains what we call “active”

electrons because it is the space where all the excitations will occur, and the optimization

of the MO coefficients will take place only for these orbitals. The flexibility of the MOs

in the active space allows the orbitals to be partially occupied as shown in Fig. 6. The

problem with choosing the active space is that as the number of electrons and orbitals are
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chosen, the number of SDs increase factorially which is computationally expensive. Then,

the chosen electrons and orbitals are the ones that will recover the most changes that occur

in the correlation energy for the predicted process, so that all the electron correlation in the

active space will be computed.

Applications of MCSCF

The focus on strongly correlated systems has increased over the years since these systems

are a much better representation of transition states, transition metal and actinide chemistry,

systems with partially broken bonds, and electronically excited states.15

Benzvalyne

One application of the CASSCF method is the study of transition states, specifically

the transition states (TSs) between benzvalyne, Fig. 7a, and benzyne, Fig. 7b. This

reaction path was surveyed by looking at both the conrotatory and disrotatory TSs according

to the Woodward-Hoffmann rules. The rules govern that for this system, 8 π electrons,

the conrotatory path would be allowed while the disrotatory path would be forbidden.16

(a)
(b)

Figure 7: a) Benzvalyne, an isomer of benzyne. b) Benzyne, an intermediate in some organic
chemistry reactions.
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Conrotatory means that the bonds breaking are twisting the same direction while disrotatory

means they are twisting opposite.

In order to search for the TSs, CASSCF was used by putting 10 active electrons in 10

active orbitals to make a CAS(10,10). This method was chosen because of the high multicon-

figurational character of benzvalyne and the breaking of multiple bonds along the reaction

coordinate as it reached the transition states. The CASSCF energies, Fig. 8, were then

used as a starting point to analyze the different response properties of the system, including:

chemical potential (µ), chemical hardness (η), electrophiliciy (ω), and polarizability (α).

Figure 8: Plot showing the energy change from reactant, benzvalyne, to transition state with
the conrotatory path in blue and the disrotatory path in red.

The overall results showed that the CASSCF energies provided a good framework to qualita-

tively understand the relationship between energy and hardness through a conceptual DFT

vantage point.

Combining the Two

Wave function techniques and density functional methods seem to have a give and take

relationship in terms of their advantages and disadvantages with one’s weakness being the
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other’s strength. Therefore, the attempt to combine the two was a natural approach to fix

the gaps in each theory.

Multiconfiguration Pair-Density Functional Theory

Multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfigura-

tion wave functions with density functional theory by using the multiconfiguration kinetic

energy, total density, and on-top pair density to calculate the energy of a system17 so

E = Vnn + 〈ΨMCSCF|T̂ + V̂ne|ΨMCSCF〉+ VC[ρ] + Eot[ρ(r),Π(r)] . (37)

It is similar in form to Kohn-Sham density functional theory but rather than having the

exchange-correlation energy functional be dependent upon only the total density, a new

functional called the on-top pair density functional is used which is dependent on both the

total density and the pair density. The on-top pair density , Π(r), is used to look at the

probability of two electrons of opposing spin to be found within the wave function.

The total density and pair density require only the one-body, Dpq, and two-body, dpqrs,

density matrices to be constructed,

ρ(r) =
∑
pq

φp(r)φq(r)Dpq (38)

and

Π(r) =
∑
pqrs

φp(r)φq(r)φr(r)φs(r)dpqrs . (39)

The two denisty matrices can then be used to calculate the on-top functional. This functional

takes on a form similar to the original exchange-correlation energy by translating the GGA
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such that

Eot[ρ(r),Π(r)] = EXC

 ρ(r),


ρ(r)(1−R)1/2, R ≤ 1

0, R > 1

, ρ′(r),


ρ′(r)(1−R)1/2, R ≤ 1

0, R > 1


(40)

where

R =
4Π(r)

ρ(r)2
, (41)

but R can become complicated with multireference systems since R is not necessarily uni-

tary.18

Some advantages to this method are that the spin-symmetry is enforced, it provides a

more natural representation for strongly correlated systems, and that it includes dynamic

correlation without the factorial increase in cost.15 MC-PDFT is unique in that it includes

dynamic correlation unlike CASSCF where many-body perturbations are used at the end.

The inclusion of this correlation comes from how the calculation takes place. The algorithm

is quite elegant and simple with the initial step optimizing the MCSCF wave function self-

consistently. Once optimized, the wave function is used to compute the energy contributions

from the nuclear repulsion, kinetic energy, nuclear-electron attraction, and Coulombic inter-

action energy. The on-top functional is then computed using the total electron density and

on-top pair density to calculate the on-top energy. Lastly the combination of the MCSCF

energy contributions and the on-top energy give the total MC-PDFT energy.

Applications of MC-PDFT

Despite being young, MC-PDFT is becoming a better known name in the sea of computa-

tional theories due to its performance for a variety of applications. These include, but are not

limited to, bond energies and potential energy curves, proton affinities, ground and excited

state charge transfer, valence and Rydberg excitations of molecules, and barrier heights.15
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Figure 9: Examples of the applications MC-PDFT has tested for.

Diels-Alder

Although MC-PDFT has been applied to a wide variety of systems, including pericyclic

reactants, it has not been used previously for in-depth study of cycloadditions. The simplest

cycloaddition is the Diels-Alder reaction of 1,3-butadiene with ethylene, where the transition

state can be on either a concerted synchronous path or a diradical stepwise path. After

years of study, the reaction path is now known to be a concerted synchronous one, and the

prediction of the correct kind of path can serve as a benchmark for testing new methods.

This study analyzes the geometries, enthalpies of activation, and reaction enthalpies using

complete active space PDFT and compares to the benchmark studies to assess if this method

can perform as well as Kohn-Sham DFT and other MC methods.

Figure 10: Concerted transition state of the Diels-Alder reaction of 1,3-butadiene and ethy-
lene.
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In comparing the concerted synchronous transition state’s activation enthalpy across

multiple different theories, Fig. 11, it can be confirmed that CAS-PDFT, MC-PDFT with a

CASSCF wave function, is more accurate than other methods at calculating the experimental

activation energy. course more systems and more properties would need to be computed to

have full confidence in the theory as a whole, but the study of the Diels-Alder system is just

one more step toward confirming the validity of MC-PDFT.

Experimental
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Figure 11: Calculated activation energies of the CTS at various levels of theory: (a) CAS-
PDFT/6-31G**, (b) CAS-PDFT/6-311G(2d,p), (c) CAS-PDFT/cc-pVDZ, (d) MN15/ma-
TZVP, (e) MN15/aug-cc-pVTZ, (f) B3LYP/ma-TZVP, (g) B3LYP/aug-cc-pVTZ, (h)
M06/ma-TZVP, (i) M06/aug-cc-pVTZ, (j) M06-2X/ma-TZVP, (k) M06-2X/aug-cc-pVTZ,
(l) revM06/ma-TZVP, (m) revM06/aug-cc-pVTZ, (n) PBE/6-31G**, (o) PBE/aug-cc-
pVTZ, (p) PBE0/aug-cc-pVTZ, and (q) UPBE/aug-cc-pVTZ.
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Conclusion

Quantum chemical methods are all trying to accomplish the same thing but in different

ways. Certain theories perform well for some systems but fail to accurately capture the

electron correlation for others. Density functional theory makes the energy a functional of

the electron density, but is limited by approximate exchange-correlation functionals and the

orbital formalism introduced by Kohn-and Sham. DFT is regularly used in systems with over

50 atoms and is a staple in both periodic systems and biomolecules. Wave function theory

calculates the energy from a Slater determinant(s). It is an inexact theory, if Hartree-

Fock is used as its base, and requires the addition of more determinants or parameters

to reintroduce electron correlation. Multiconfiguration self-consistent filed theory uses the

linear combination of Slater determinants to recover static electron correlation, but fails to

capture dynamic correlation. Multiconfiguration pair-density functional theory is then the

combination of the two. It is similar to Kohn-Sham density functional theory but replaces

the exchange-correlation functional with the on-top functional.

Although the numerous amount of theories may seem daunting, quantum chemical meth-

ods are constantly being worked on to improve their reliability and expand their range of

applications. It is in the best interest of the chemical community to recognize the impor-

tance of creating more efficient and accurate ways to compute chemical properties. The

advancements in this area can help many different areas of chemistry and even areas within

physics. Through understanding quantum chemical methods, a knowledge of the underlying

mathematics of chemistry can be gained to help provide a greater context for how chemical

phenomena occur.

References

(1) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Physical Review 1964, 136,

B864–B871.

27



(2) Kohn, W. Nobel Lecture: Electronic structure of matter—wave functions and density

functionals. Reviews of Modern Physics 1999, 71, 1253–1266.

(3) Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory.

Chemical Reviews 2003, 103, 1793–1874.

(4) Yu, H. S.; Li, S. L.; Truhlar, D. G. Perspective: Kohn-Sham density functional theory

descending a staircase. Journal of Chemical Physics 2016, 145, 130901.

(5) Burke, K.; Friends, The ABC of DFT ; 2007.

(6) Jensen, F. Introduction to Computational Chemistry ; John Wiley and Sons, Ltd, 2007.

(7) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for density functional theory.

Chemical Reviews 2012, 112, 289–320.

(8) Harris, J. Adiabatic-connection approach to Kohn-Sham theory. Phys. Rev. A 1984,

29 .

(9) Magyar, R. J. Adiabatic Connection and Uniform Density Scaling : Cornerstones of a

Density Functional Theory, Dissertation Director : Kieron Burke. Ph.D. thesis, State

University of New Jersey, 2003.

(10) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in com-

putational chemistry: an overview and extensive assessment of 200 density functionals.

Mol. Phys. 2017, 115, 2315–2372.

(11) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Func-

tional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for

Molecules and Solids. 2003,

(12) Zhao, Y.; Truhlar, D. G.; Zhao, Y.; Truhlar, ·. D. G. The M06 suite of density function-

als for main group thermochemistry, thermochemical kinetics, noncovalent interactions,

28



excited states, and transition elements: two new functionals and systematic testing of

four M06-class functionals and 12 other functionals and inorganometallic chemistry and

for noncovalent interactions. Theor Chem Acc. 2008, 120, 215–241.

(13) McQuarrie, D. A.; Simon, J. D. Physical Chemistry : A Molecular Approach; University

Science Books: Sausalito, Calif., 1997.

(14) Sherrill, C. D. The Multiconfigurational Self-Consistent-Field Method. School of Chem-

istry and Biochemistry Georgia Institute of Technology March 2004, 1–6.

(15) Gagliardi, L.; Truhlar, D. G.; Manni, G. L.; Carlson, R. K.; Hoyer, C. E.; Bao, J. L.

Multiconfiguration pair-density functional theory: A new way to treat strongly corre-

lated systems. Accounts of Chemical Research 2017, 50, 66–73.

(16) Woodward, R. B.; Hoffmann, R. Stereochemistry of Electrocyclic Reactions. Commun.

to Ed. 1965, 87, 395–397.

(17) Li Manni, G.; Carlson, R. K.; Luo, S.; Ma, D.; Olsen, J.; Truhlar, D. G.; Gagliardi, L.

Multiconfiguration pair-density functional theory. Journal of Chemical Theory and

Computation 2014, 10, 3669–3680.

(18) Carlson, R. K.; Truhlar, D. G.; Gagliardi, L. On-Top Pair Density as a Measure of

Left-Right Correlation in Bond Breaking. Journal of Physical Chemistry A 2017, 121,

5540–5547.

29


	Quantum Chemical Methods: Its history and future
	Recommended Citation

	tmp.1578578867.pdf.NWorz

